差分+树状数组 线段树【P2357】 守墓人
题目描述-->p2357 守墓人
敲了一遍线段树,水过.
树状数组分析
主要思路:
差分
简单介绍一下差分(详细概念太麻烦,看下面.
给定一个数组
7 8 6 5 1 8 18 20 35 //瞎敲的emmm
7 1 -2 -1 3 10 2 15//对应得到差分数组.
我们发现从[1,i]求和,得到的就是我们的原数组对应值.(这就是差分.
为什么用差分+树状数组?
对应差分,我们修改一个位置都会对应影响一段区间.
差分的话,我们修改一个位置就达到了修改后面区间的效果.
而我们修改一个区间,只需要对于左端点增加k,右端点+1位置减去k即可.
对应差分操作,区间修改操作,我们可以推导出下面的式子.
图片来源-->@胡小兔
学习一下(简单了解)就可以了.
所以我们就可以很简单码出来.
码量小又简单,树状数组你值得拥有
安利一篇很好的写树状数组的blog
--------------------代码---------------------
/*
目前树状数组解法rank1(吸氧
Timeuse:214ms
Creator:顾z
Date:2018.09.07
*/
#include<bits/stdc++.h>
#define int long long
#define IL inline
#define RI register int
#define lowbit(x) x&-x
IL void in(int &x){
int f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while(s<='9'&&s>='0'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,last,opt,x,y,z,mian;
int sum1[500002],sum2[500002];
IL void add(int pos,int x)
{
for(RI i=pos;i<=n;i+=lowbit(i))
sum1[i]+=x,sum2[i]+=pos*x;
}
IL long long query(int pos)
{
long long res=0;
for(RI i=pos;i;i-=lowbit(i))
res+=(pos+1)*sum1[i]-sum2[i];
return res;
}
main(void)
{
in(n),in(m);
for(RI i=1;i<=n;i++)in(x),add(i,x-last),last=x;
for(RI i=1,opt;i<=m;i++)
{
in(opt);
switch(opt)
{
case 1:in(x),in(y),in(z),add(x,z),add(y+1,-z);break;
case 2:in(z),mian+=z;break;
case 3:in(z),mian-=z;break;
case 4:in(x),in(y);printf("%lld\n",query(y)-query(x-1)+(x==1)*mian);break;
case 5:printf("%lld\n",query(1)+mian);
}
}
}
再粘一下线段树代码 emm↓
/*
线段树就跑的有些慢了 emmm(未吸氧
zkw线段树应该会更快一些.
Timeuse:594ms
Creator:顾z
Date:2018.09.03
*/
#include<bits/stdc++.h>
#define int long long
#define IL inline
#define RI register int
#define ls o<<1
#define rs o<<1|1
#define N 1000008
IL void read(int &x){
int f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while(s<='9'&&s>='0'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,f,tr[N],tg[N],mian,c[N];
IL void up(int o){tr[o]=tr[ls]+tr[rs];return;}
IL void build(int o,int l,int r)
{
if(l==r)
{
read(tr[o]);
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
return;
}
IL void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=tg[o]*(mid-l+1);
tr[rs]+=tg[o]*(r-mid);
tg[o]=0;
}
}
IL int query(int o,int l,int r,int x,int y)
{
if(x<=l&&y>=r)return tr[o];
down(o,l,r);
int res=0;
int mid=(l+r)>>1;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
IL void change(int o,int l,int r,int x,int y,int del)
{
if(x<=l&&y>=r)
{
tg[o]+=del;
tr[o]+=del*(r-l+1);
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,del);
if(y>mid)change(rs,mid+1,r,x,y,del);
up(o);
return;
}
signed main()
{
read(n),read(f);
build(1,1,n);
for(RI i=1,opt,x,y,z;i<=f;i++)
{
read(opt);
switch(opt)
{
case 1:read(x),read(y),read(z),change(1,1,n,x,y,z);break;
case 2:read(z),mian+=z;break;
case 3:read(z),mian-=z;break;
case 4:read(x),read(y),printf("%lld\n",query(1,1,n,x,y)+(x==1)*mian);break;
case 5:printf("%lld\n",query(1,1,n,1,1)+mian);break;
}
}
}
目前**树状数组解法rank1 **
除特殊声明外,本博客作品均由顾z创作。
未经博主允许,不得转载