Elasticsearch--Aggregation详细总结(聚合统计)

Elasticsearch的Aggregation功能也异常强悍。

Aggregation共分为三种:Metric Aggregations、Bucket Aggregations、 Pipeline Aggregations。下面将分别进行总结。

 

以下所有内容都来自官网:喜欢原汁原味的参看下方网址,不喜欢英文的参看本人总结。

官网(权威):https://www.elastic.co/guide/en/elasticsearch/reference/2.4/search-aggregations-metrics-avg-aggregation.html

 

 

#########################################

1、Metric Aggregations

1>Avg Aggregation  #计算出字段平均值

{
    "aggs" : {
        "avg_grade" : { "avg" : { "field" : "grade" } }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "avg_grade": {
      "avg": {
        "field": "grade"
      }
    }
  }
}

参数:search_type=count 表示只返回aggregation部分的结果。

 

2>Cardinality Aggregation  #计算出字段的唯一值。相当于sql中的distinct

 

{
    "aggs" : {
        "author_count" : {
            "cardinality" : {
                "field" : "author"
            }
        }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "author_count": {
      "cardinality": {
        "field": "author"
      }
    }
  }
}

 

3>Extended Stats Aggregation #字段的其他属性,包括最大最小,方差等等。

 

{
    "aggs" : {
        "grades_stats" : { "extended_stats" : { "field" : "grade" } }
    }
}

 

 

例子:GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "grades_stats": {
      "extended_stats": {
        "field": "grade"
      }
    }
  }
}

返回值:

 

{
    ...

    "aggregations": {
        "grade_stats": {
           "count": 9,
           "min": 72,
           "max": 99,
           "avg": 86,
           "sum": 774,
           "sum_of_squares": 67028,
           "variance": 51.55555555555556,
           "std_deviation": 7.180219742846005,
           "std_deviation_bounds": {
            "upper": 100.36043948569201,
            "lower": 71.63956051430799
           }
        }
    }
}

 

 

4>Geo Bounds Aggregation #计算出所有的地理坐标将会落在一个矩形区域。比如说朝阳区域有很多饭店,我就可以用一个矩形把这些饭店都圈起来,看看范围。

 

{
    "query" : {
        "match" : { "business_type" : "shop" }
    },
    "aggs" : {
        "viewport" : {
            "geo_bounds" : {
                "field" : "location", 
                "wrap_longitude" : true 
            }
        }
    }
}

 

 

例子:

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "viewport": {
      "geo_bounds": {
        "field": "location",
        "wrap_longitude": true
      }
    }
  }
}

返回值:

 

{
    ...

    "aggregations": {
        "viewport": {
            "bounds": {
                "top_left": {
                    "lat": 80.45,
                    "lon": -160.22
                },
                "bottom_right": {
                    "lat": 40.65,
                    "lon": 42.57
                }
            }
        }
    }
}

 

 

注释:这个矩形区域左上角坐标,和右下角坐标已经给出。也就是说你查出来的数据将会都落在这个地理范围内。

 

 

5>Geo Centroid Aggregation   #计算出所有文档的大概的中心点。比如说某个地区盗窃犯罪很多,那我这样就可以看到这片区域到底哪个点(街道)偷盗事件最猖狂。

 

{
    "query" : {
        "match" : { "crime" : "burglary" }
    },
    "aggs" : {
        "centroid" : {
            "geo_centroid" : {
                "field" : "location" 
            }
        }
    }
}

 

 

例子:

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "centroid": {
      "geo_centroid": {
        "field": "location"
      }
    }
  }
}

 

6>Max Aggregation  #求最大值

 

{
    "aggs" : {
        "max_price" : { "max" : { "field" : "price" } }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "max_price": {
      "max": {
        "field": "price"
      }
    }
  }
}

 

7>Min Aggregation #求最小值

 

{
    "aggs" : {
        "min_price" : { "min" : { "field" : "price" } }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "min_price": {
      "min": {
        "field": "price"
      }
    }
  }
}

 

 

8>Percentiles Aggregation #百分比统计。可以看出你网站的所有页面。加载时间的差异。

 

{
    "aggs" : {
        "load_time_outlier" : {
            "percentiles" : {
                "field" : "load_time" 
            }
        }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "load_time_outlier": {
      "percentiles": {
        "field": "load_time"
      }
    }
  }
}

 

返回:可以看出这个网站75%页面在29毫秒左右就加载完毕了。有5%的页面超过了60毫秒。

 

{
    ...

   "aggregations": {
      "load_time_outlier": {
         "values" : {
            "1.0": 15,
            "5.0": 20,
            "25.0": 23,
            "50.0": 25,
            "75.0": 29,
            "95.0": 60,
            "99.0": 150
         }
      }
   }
}

 

9>Percentile Ranks Aggregation #看看15毫秒和30毫秒内大概有多少页面加载完。

 

{
    "aggs" : {
        "load_time_outlier" : {
            "percentile_ranks" : {
                "field" : "load_time", 
                "values" : [15, 30]
            }
        }
    }
}

 

例子:

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "load_time_outlier": {
      "percentile_ranks": {
        "field": "load_time",
        "values": [
          15,
          30
        ]
      }
    }
  }
}

 

返回:看出15毫秒时大概92%页面加载完毕。30毫秒时基本都加载完成。

 

{
    ...

   "aggregations": {
      "load_time_outlier": {
         "values" : {
            "15": 92,
            "30": 100
         }
      }
   }
}

 

 

10>Stats Aggregation  #最大、最小、和、平均值。一起求出来

 

{
    "aggs" : {
        "grades_stats" : { "stats" : { "field" : "grade" } }
    }
}

 

例子:

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "grades_stats": {
      "stats": {
        "field": "grade"
      }
    }
  }
}

 

11>Sum Aggregation #求和

 

 "aggs" : {
        "intraday_return" : { "sum" : { "field" : "change" } }
    }

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "intraday_return": {
      "sum": {
        "field": "change"
      }
    }
  }
}

 

12>Top hits Aggregation  #较为常用的统计。获取到每组前n条数据。相当于sql 中 group by 后取出前n条。 

 

{
    "aggs": {
        "top-tags": {
            "terms": {
                "field": "tags",
                "size": 3
            },
            "aggs": {
                "top_tag_hits": {
                    "top_hits": {
                        "sort": [
                            {
                                "last_activity_date": {
                                    "order": "desc"
                                }
                            }
                        ],
                        "_source": {
                            "include": [
                                "title"
                            ]
                        },
                        "size" : 1
                    }
                }
            }
        }
    }
}

例子:取100组,每组只要第一条。为了见bain没用order和_source,请自行测试他们。

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "zxw_id",
        "size": 100
      },
      "aggs": {
        "top_tag_hits": {
          "top_hits": {
            "size": 1
          }
        }
      }
    }
  }
}

 

14>Value Count Aggregation  #数量统计,看看这个字段一共有多少个不一样的数值。

 

{
    "aggs" : {
        "grades_count" : { "value_count" : { "field" : "grade" } }
    }
}

例子:

 

GET index/type/_search?search_type=count
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "grades_count": {
      "value_count": {
        "field": "grade"
      }
    }
  }
}

 

2、Bucket Aggregations 这是第二种类型的统计(用的也是最多的,最实用的。)。后续也是抄写,各位自己看吧。有问题需要讨论的=》1250134974@qq.com发邮件.

网站:https://www.elastic.co/guide/en/elasticsearch/reference/2.4/search-aggregations-bucket-children-aggregation.html

 

3、Pipeline Aggregations #这是第三中类型的聚合。

posted on 2018-08-22 17:45  啊哈哈哈哈-  阅读(13129)  评论(0编辑  收藏  举报