Hive执行报错org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.InterruptedException: sleep interrupted
报错日志如下:(肯定有时报错信息不准确,不能准确定位问题出现在哪里)
org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.InterruptedException: sleep interrupted at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:348) at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:428) at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:568) at org.apache.hadoop.mapreduce.Job$1.run(Job.java:323) at org.apache.hadoop.mapreduce.Job$1.run(Job.java:320) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657) at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:320) at org.apache.hadoop.mapreduce.Job.getJobState(Job.java:352) at org.apache.hadoop.mapred.JobClient$NetworkedJob.getJobState(JobClient.java:300) at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:244) at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:549) at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:438) at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:137) at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:160) at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:88) at org.apache.hadoop.hive.ql.exec.TaskRunner.run(TaskRunner.java:75) Caused by: java.lang.InterruptedException: sleep interrupted at java.lang.Thread.sleep(Native Method) at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:345) ... 17 more Total MapReduce CPU Time Spent: -2 msec Job Submission failed with exception 'org.apache.hadoop.yarn.exceptions.YarnRuntimeException(java.lang.InterruptedException: sleep interrupted)'
或者如下:
2021-10-31 09:00:11,340 [Thread-72] ERROR com.hadoop.compression.lzo.GPLNativeCodeLoader - Could not load native gpl library java.lang.UnsatisfiedLinkError: /home/pirate/dev/disk-5/tmp/yarn-local/usercache/pirate/appcache/application_1635150008466_34289/container_1635150008466_34289_01_000001/tmp/unpacked-3959672880919352106-libgplcompression.so: /home/pirate/dev/disk-5/tmp/yarn-local/usercache/pirate/appcache/application_1635150008466_34289/container_1635150008466_34289_01_000001/tmp/unpacked-3959672880919352106-libgplcompression.so: failed to map segment from shared object: Operation not permitted at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1941) at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1824) at java.lang.Runtime.load0(Runtime.java:809) at java.lang.System.load(System.java:1086) at com.hadoop.compression.lzo.GPLNativeCodeLoader.<clinit>(GPLNativeCodeLoader.java:51) at com.hadoop.compression.lzo.LzoCodec.<clinit>(LzoCodec.java:71) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at org.apache.hadoop.conf.Configuration.getClassByNameOrNull(Configuration.java:2134) at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2099) at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:132) at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:179) at org.apache.hadoop.mapred.lib.CombineFileInputFormat.isSplitable(CombineFileInputFormat.java:159) at org.apache.hadoop.mapred.lib.CombineFileInputFormat.isSplitable(CombineFileInputFormat.java:151) at org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat.getMoreSplits(CombineFileInputFormat.java:283) at org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat.getSplits(CombineFileInputFormat.java:239) at org.apache.hadoop.mapred.lib.CombineFileInputFormat.getSplits(CombineFileInputFormat.java:75) at org.apache.hadoop.hive.shims.HadoopShimsSecure$CombineFileInputFormatShim.getSplits(HadoopShimsSecure.java:309) at org.apache.hadoop.hive.ql.io.CombineHiveInputFormat.getCombineSplits(CombineHiveInputFormat.java:470) at org.apache.hadoop.hive.ql.io.CombineHiveInputFormat.getSplits(CombineHiveInputFormat.java:571) at org.apache.hadoop.mapreduce.JobSubmitter.writeOldSplits(JobSubmitter.java:328) at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:320) at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:196) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657) at org.apache.hadoop.mapreduce.Job.submit(Job.java:1287) at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:575) at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:570) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657) at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:570) at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:561) at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:432) at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:137) at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:160) at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:88) at org.apache.hadoop.hive.ql.exec.TaskRunner.run(TaskRunner.java:75) 2021-10-31 09:00:11,341 [Thread-72] ERROR com.hadoop.compression.lzo.LzoCodec - Cannot load native-lzo without native-hadoop
排查hive脚本发现,Hive指定优化参数如下:
set hive.exec.compress.output=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec; set mapred.output.compression.type=BLOCK; set hive.exec.dynamic.partition.mode=nonstrict; set hive.exec.dynamic.partition=true; set hive.auto.convert.join=true; set mapreduce.map.memory.mb=40960; set mapreduce.reduce.memory.mb=40960; set mapred.child.java.opts=-Xmx1536m; set mapreduce.job.reduce.slowstart.completedmaps=0.8; set hive.exec.parallel=true;
考虑可能是mapreduce.map.memory.mb 或者 mapreduce.reduce.memory.mb参数配置过大引起的,这两个参数代表需要向yarn container中申请的内存大小,查找Hadoop yarn-site.xml配置文件发现如下配置:
<property> <name>yarn.scheduler.maximum-allocation-mb</name> <value>30720</value> </property>
于是将上述参数调小至此参数范围内,重新提交脚本,发现脚本执行成功;
总结:
Mapper/Reducer阶段JVM堆内存溢出参数调优
目前MapReduce主要通过两个组参数去控制内存:(将如下参数调大)
Maper: mapreduce.map.java.opts=-Xmx2048m(默认参数,表示jvm堆内存,注意是mapreduce不是mapred) mapreduce.map.memory.mb=2304(container的内存) Reducer: mapreduce.reduce.java.opts=-=-Xmx2048m(默认参数,表示jvm堆内存) mapreduce.reduce.memory.mb=2304(container的内存)
注意:因为在yarn container这种模式下,map/reduce task是运行在Container之中的,
所以上面提到的mapreduce.map(reduce).memory.mb大小都大于mapreduce.map(reduce).java.opts值的大小。
mapreduce.{map|reduce}.java.opts能够通过Xmx设置JVM最大的heap的使用,一般设置为0.75倍的memory.mb,因为需要为java code等预留些空间
posted on 2021-11-01 19:11 RICH-ATONE 阅读(2281) 评论(0) 编辑 收藏 举报