Kafka和MQ比较
kafka原本设计的初衷是日志统计分析,现在基于大数据的背景下也可以做运营数据的分析统计,而redis的主要场景是内存数据库,作为消息队列来说可靠性太差,而且速度太依赖网络IO,在服务器本机上的速度较快,且容易出现数据堆积的问题,在比较轻量的场合下能够适用。
RabbitMQ,遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上。
kafka是Linkedin于2010年12月份开源的消息发布订阅系统,它主要用于处理活跃的流式数据,大数据量的数据处理上。
在架构模型方面
RabbitMQ遵循AMQP协议,RabbitMQ的broker由Exchange,Binding,queue组成,其中exchange和binding组成了消息的路由键;客户端Producer通过连接channel和server进行通信,Consumer从queue获取消息进行消费(长连接,queue有消息会推送到consumer端,consumer循环从输入流读取数据)。rabbitMQ以broker为中心;有消息的确认机制。
kafka遵从一般的MQ结构,producer,broker,consumer,以consumer为中心,消息的消费信息保存的客户端consumer上,consumer根据消费的点,从broker上批量pull数据;无消息确认机制。
在吞吐量
rabbitMQ在吞吐量方面稍逊于kafka,他们的出发点不一样,rabbitMQ支持对消息的可靠的传递,支持事务,不支持批量的操作;基于存储的可靠性的要求存储可以采用内存或者硬盘。
kafka具有高的吞吐量,内部采用消息的批量处理,zero-copy机制,数据的存储和获取是本地磁盘顺序批量操作,具有O(1)的复杂度,消息处理的效率很高。
在可用性方面
rabbitMQ支持miror的queue,主queue失效,miror queue接管。
kafka的broker支持主备模式。
在集群负载均衡方面
rabbitMQ的负载均衡需要单独的loadbalancer进行支持。
kafka采用zookeeper对集群中的broker、consumer进行管理,可以注册topic到zookeeper上;通过zookeeper的协调机制,producer保存对应topic的broker信息,可以随机或者轮询发送到broker上;并且producer可以基于语义指定分片,消息发送到broker的某分片上。