CS190.1x-ML_lab1_review_student

这是CS190.1x第一次作业,主要教你如何使用numpy。numpy可以说是python科学计算的基础包了,用途非常广泛。相关ipynb文件见我github

这次作业主要分成5个部分,分别是:数学复习,numpy介绍,numpy和线性代数,lambda表达式和CTR预览(lab4的内容,不明白有什么意义,略过)

Part 1 Math review

第一部分主要介绍了线性代数的知识,包括向量的加减乘除和矩阵的加减乘除,代码也不用贴了。

Part 2 NumPy

numpy是python用于向量计算的包,它对向量和矩阵计算提供了非常好的接口,而且对速度和内存的优化也做的非常好。本部分会详细的介绍numpy。

Scalar multiplication

向量与常数相乘

# It is convention to import NumPy with the alias np
import numpy as np
# TODO: Replace <FILL IN> with appropriate code
# Create a numpy array with the values 1, 2, 3
simpleArray = np.array([1,2,3])
# Perform the scalar product of 5 and the numpy array
timesFive = 5 * simpleArray
print simpleArray
print timesFive

Element-wise multiplication and dot product

numpy提供了元素相乘和点乘

# TODO: Replace <FILL IN> with appropriate code
# Create a ndarray based on a range and step size.
u = np.arange(0, 5, .5)
v = np.arange(5, 10, .5)

elementWise = u * v
dotProduct = np.dot(u,v)
print 'u: {0}'.format(u)
print 'v: {0}'.format(v)
print '\nelementWise\n{0}'.format(elementWise)
print '\ndotProduct\n{0}'.format(dotProduct)

Matrix math

numpy提供了矩阵的转置,点乘,求逆运算

# TODO: Replace <FILL IN> with appropriate code
from numpy.linalg import inv

A = np.matrix([[1,2,3,4],[5,6,7,8]])
print 'A:\n{0}'.format(A)
# Print A transpose
print '\nA transpose:\n{0}'.format(A.T)

# Multiply A by A transpose
AAt = A.dot(np.matrix.transpose(A))
print '\nAAt:\n{0}'.format(AAt)

# Invert AAt with np.linalg.inv()
AAtInv = inv(AAt)
print '\nAAtInv:\n{0}'.format(AAtInv)

# Show inverse times matrix equals identity
# We round due to numerical precision
print '\nAAtInv * AAt:\n{0}'.format((AAtInv * AAt).round(4))

Part 3 Additional NumPy and Spark linear algebra

Slices

熟悉python的list的人对这个应该不陌生。

# TODO: Replace <FILL IN> with appropriate code
features = np.array([1, 2, 3, 4])
print 'features:\n{0}'.format(features)

# The last three elements of features
lastThree = features[-3:]

print '\nlastThree:\n{0}'.format(lastThree)

Combining ndarray objects

这里介绍np.hstack():按照列来合并; np.vstack():按照行来合并。

# TODO: Replace <FILL IN> with appropriate code
zeros = np.zeros(8)
ones = np.ones(8)
print 'zeros:\n{0}'.format(zeros)
print '\nones:\n{0}'.format(ones)

zerosThenOnes = np.hstack((zeros,ones)) # A 1 by 16 array
zerosAboveOnes = np.vstack((zeros,ones))  # A 2 by 8 array

print '\nzerosThenOnes:\n{0}'.format(zerosThenOnes)
print '\nzerosAboveOnes:\n{0}'.format(zerosAboveOnes)

PySpark's DenseVector

PySpark提供了DenseVector(在pyspark.mllib.lianlg)来存储数组,这和numpy有点类似。

from pyspark.mllib.linalg import DenseVector
# TODO: Replace <FILL IN> with appropriate code
numpyVector = np.array([-3, -4, 5])
print '\nnumpyVector:\n{0}'.format(numpyVector)

# Create a DenseVector consisting of the values [3.0, 4.0, 5.0]
myDenseVector = DenseVector([3.0, 4.0, 5.0])
# Calculate the dot product between the two vectors.
denseDotProduct = myDenseVector.dot(numpyVector)

print 'myDenseVector:\n{0}'.format(myDenseVector)
print '\ndenseDotProduct:\n{0}'.format(denseDotProduct)

Part 4 Python lambda expressions

lambda之前出现了这么多次,不明白为啥才讲。。。囧。讲lambda的博客也是特别多,大家有兴趣可以搜搜看。

# Example function
def addS(x):
    return x + 's'
print type(addS)
print addS
print addS('cat')

# As a lambda
addSLambda = lambda x: x + 's'
print type(addSLambda)
print addSLambda
print addSLambda('cat')

# TODO: Replace <FILL IN> with appropriate code
# Recall that: "lambda x, y: x + y" creates a function that adds together two numbers
multiplyByTen = lambda x: x * 10
print multiplyByTen(5)

# Note that the function still shows its name as <lambda>
print '\n', multiplyByTen

lambda fewer steps than def

这里给出了lamda比def要灵活的例子

# Code using def that we will recreate with lambdas
def plus(x, y):
    return x + y

def minus(x, y):
    return x - y

functions = [plus, minus]
print functions[0](4, 5)
print functions[1](4, 5)

# TODO: Replace <FILL IN> with appropriate code
# The first function should add two values, while the second function should subtract the second
# value from the first value.
lambdaFunctions = [lambda x,y : x+y ,  lambda x,y : x-y]
print lambdaFunctions[0](4, 5)
print lambdaFunctions[1](4, 5)

Lambda expression arguments

这一部分应该是说lambda的入参不一样,但是效果一样

# Examples.  Note that the spacing has been modified to distinguish parameters from tuples.

# One-parameter function
a1 = lambda x: x[0] + x[1]
a2 = lambda (x0, x1): x0 + x1
print 'a1( (3,4) ) = {0}'.format( a1( (3,4) ) )
print 'a2( (3,4) ) = {0}'.format( a2( (3,4) ) )

# Two-parameter function
b1 = lambda x, y: (x[0] + y[0], x[1] + y[1])
b2 = lambda (x0, x1), (y0, y1): (x0 + y0, x1 + y1)
print '\nb1( (1,2), (3,4) ) = {0}'.format( b1( (1,2), (3,4) ) )
print 'b2( (1,2), (3,4) ) = {0}'.format( b2( (1,2), (3,4) ) )

# TODO: Replace <FILL IN> with appropriate code
# Use both syntaxes to create a function that takes in a tuple of two values and swaps their order
# E.g. (1, 2) => (2, 1)
swap1 = lambda x: (x[1],x[0])
swap2 = lambda (x0, x1): (x1,x0)
print 'swap1((1, 2)) = {0}'.format(swap1((1, 2)))
print 'swap2((1, 2)) = {0}'.format(swap2((1, 2)))

# Using either syntax, create a function that takes in a tuple with three values and returns a tuple
# of (2nd value, 3rd value, 1st value).  E.g. (1, 2, 3) => (2, 3, 1)
swapOrder = lambda x:(x[1],x[2],x[0])
print 'swapOrder((1, 2, 3)) = {0}'.format(swapOrder((1, 2, 3)))

# Using either syntax, create a function that takes in three tuples each with two values.  The
# function should return a tuple with the values in the first position summed and the values in the
# second position summed. E.g. (1, 2), (3, 4), (5, 6) => (1 + 3 + 5, 2 + 4 + 6) => (9, 12)
sumThree = lambda x,y,z :(x[0]+y[0]+z[0],x[1]+y[1]+z[1])
print 'sumThree((1, 2), (3, 4), (5, 6)) = {0}'.format(sumThree((1, 2), (3, 4), (5, 6)))

Functional programming

# Create a class to give our examples the same syntax as PySpark
class FunctionalWrapper(object):
    def __init__(self, data):
        self.data = data
    def map(self, function):
        """Call `map` on the items in `data` using the provided `function`"""
        return FunctionalWrapper(map(function, self.data))
    def reduce(self, function):
        """Call `reduce` on the items in `data` using the provided `function`"""
        return reduce(function, self.data)
    def filter(self, function):
        """Call `filter` on the items in `data` using the provided `function`"""
        return FunctionalWrapper(filter(function, self.data))
    def __eq__(self, other):
        return (isinstance(other, self.__class__)
            and self.__dict__ == other.__dict__)
    def __getattr__(self, name):  return getattr(self.data, name)
    def __getitem__(self, k):  return self.data.__getitem__(k)
    def __repr__(self):  return 'FunctionalWrapper({0})'.format(repr(self.data))
    def __str__(self):  return 'FunctionalWrapper({0})'.format(str(self.data))

# Map example

# Create some data
mapData = FunctionalWrapper(range(5))

# Define a function to be applied to each element
f = lambda x: x + 3

# Imperative programming: loop through and create a new object by applying f
mapResult = FunctionalWrapper([])  # Initialize the result
for element in mapData:
    mapResult.append(f(element))  # Apply f and save the new value
print 'Result from for loop: {0}'.format(mapResult)

# Functional programming: use map rather than a for loop
print 'Result from map call: {0}'.format(mapData.map(f))

# Note that the results are the same but that the map function abstracts away the implementation
# and requires less code

# TODO: Replace <FILL IN> with appropriate code
dataset = FunctionalWrapper(range(10))

# Multiply each element by 5
mapResult = dataset.map(lambda x :x*5)
# Keep the even elements
# Note that "x % 2" evaluates to the remainder of x divided by 2
filterResult = dataset.filter(lambda x : x%2==0)
# Sum the elements
reduceResult = dataset.reduce(lambda x,y: x+y)

print 'mapResult: {0}'.format(mapResult)
print '\nfilterResult: {0}'.format(filterResult)
print '\nreduceResult: {0}'.format(reduceResult)

Composability

# Example of a mult-line expression statement
# Note that placing parentheses around the expression allow it to exist on multiple lines without
# causing a syntax error.
(dataset
 .map(lambda x: x + 2)
 .reduce(lambda x, y: x * y))

# TODO: Replace <FILL IN> with appropriate code
# Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x :x*5).filter(lambda x : x%2==0).reduce(lambda x,y: x+y)
print finalSum
posted @ 2017-04-20 11:10  james+zhao  阅读(476)  评论(0编辑  收藏  举报