Douglas—Peucker 矢量数据压缩算法

基本思路是:对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比:
    若dmax<D,这条曲线上的中间点全部舍去;
    若dmax≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。

/// <summary>
/// Uses the Douglas Peucker algorithm to reduce the number of points.
/// </summary>
/// <param name="Points">The points.</param>
/// <param name="Tolerance">The tolerance.</param>
/// <returns></returns>
public static List<Point> DouglasPeuckerReduction
    (List<Point> Points, Double Tolerance)
{
    if (Points == null || Points.Count < 3)
    return Points;

    Int32 firstPoint = 0;
    Int32 lastPoint = Points.Count - 1;
    List<Int32> pointIndexsToKeep = new List<Int32>();

    //Add the first and last index to the keepers
    pointIndexsToKeep.Add(firstPoint);
    pointIndexsToKeep.Add(lastPoint);

    //The first and the last point cannot be the same
    while (Points[firstPoint].Equals(Points[lastPoint]))
    {
        lastPoint--;
    }

    DouglasPeuckerReduction(Points, firstPoint, lastPoint, 
    Tolerance, ref pointIndexsToKeep);

    List<Point> returnPoints = new List<Point>();
    pointIndexsToKeep.Sort();
    foreach (Int32 index in pointIndexsToKeep)
    {
        returnPoints.Add(Points[index]);
    }

    return returnPoints;
}
    
/// <summary>
/// Douglases the peucker reduction.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="firstPoint">The first point.</param>
/// <param name="lastPoint">The last point.</param>
/// <param name="tolerance">The tolerance.</param>
/// <param name="pointIndexsToKeep">The point index to keep.</param>
private static void DouglasPeuckerReduction(List<Point> 
    points, Int32 firstPoint, Int32 lastPoint, Double tolerance, 
    ref List<Int32> pointIndexsToKeep)
{
    Double maxDistance = 0;
    Int32 indexFarthest = 0;
    
    for (Int32 index = firstPoint; index < lastPoint; index++)
    {
        Double distance = PerpendicularDistance
            (points[firstPoint], points[lastPoint], points[index]);
        if (distance > maxDistance)
        {
            maxDistance = distance;
            indexFarthest = index;
        }
    }

    if (maxDistance > tolerance && indexFarthest != 0)
    {
        //Add the largest point that exceeds the tolerance
        pointIndexsToKeep.Add(indexFarthest);
    
        DouglasPeuckerReduction(points, firstPoint, 
        indexFarthest, tolerance, ref pointIndexsToKeep);
        DouglasPeuckerReduction(points, indexFarthest, 
        lastPoint, tolerance, ref pointIndexsToKeep);
    }
}

/// <summary>
/// The distance of a point from a line made from point1 and point2.
/// </summary>
/// <param name="pt1">The PT1.</param>
/// <param name="pt2">The PT2.</param>
/// <param name="p">The p.</param>
/// <returns></returns>
public static Double PerpendicularDistance
    (Point Point1, Point Point2, Point Point)
{
    //Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)|   *Area of triangle
    //Base = v((x1-x2)²+(x1-x2)²)                               *Base of Triangle*
    //Area = .5*Base*H                                          *Solve for height
    //Height = Area/.5/Base

    Double area = Math.Abs(.5 * (Point1.X * Point2.Y + Point2.X * 
    Point.Y + Point.X * Point1.Y - Point2.X * Point1.Y - Point.X * 
    Point2.Y - Point1.X * Point.Y));
    Double bottom = Math.Sqrt(Math.Pow(Point1.X - Point2.X, 2) + 
    Math.Pow(Point1.Y - Point2.Y, 2));
    Double height = area / bottom * 2;

    return height;
    
    //Another option
    //Double A = Point.X - Point1.X;
    //Double B = Point.Y - Point1.Y;
    //Double C = Point2.X - Point1.X;
    //Double D = Point2.Y - Point1.Y;
    
    //Double dot = A * C + B * D;
    //Double len_sq = C * C + D * D;
    //Double param = dot / len_sq;
    
    //Double xx, yy;
    
    //if (param < 0)
    //{
    //    xx = Point1.X;
    //    yy = Point1.Y;
    //}
    //else if (param > 1)
    //{
    //    xx = Point2.X;
    //    yy = Point2.Y;
    //}
    //else
    //{
    //    xx = Point1.X + param * C;
    //    yy = Point1.Y + param * D;
    //}
    
    //Double d = DistanceBetweenOn2DPlane(Point, new Point(xx, yy));
}

  

posted @ 2012-12-03 11:22  OYK  阅读(759)  评论(0编辑  收藏  举报