noip25

T1

经过一波大力推式子,发现答案是 \(\frac{n^{2}-1}{9}\)

式子回头再补,可能会

Code
#include<cstdio>
#define re register
#define int long long
namespace OMA
{
   int t,n;
   const int p = 998244353;
   inline int read()
   {
     int s=0,w=1; char ch=getchar();
     while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
     while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
     return s*w;
   }
   inline int quickpow(int a,int b)
   {
     int ans = 1;
     while(b)
     {
       if(b&1)
       { ans = ans*a%p; }
       a = a*a%p;
       b >>= 1;
     }
     return ans;
   }
   signed main()
   {
     t = read();
     int inv = quickpow(3,p-2);
     while(t--)
     {
       int n = read()%p,ans = 0;
       /*for(re int i=1; i<=n; i++)
       {
         (ans += i*(i-1)%p*inv%p) %= p;
       }*/
       printf("%lld\n",(n%p*n%p-1)%p*quickpow(9,p-2)%p);
     }
     return 0;
   }
}
signed main()
{ return OMA::main(); }

T2

考场想到了之前的noip14T3,当时xin用的vector 骗分...所以,我也....

好吧,是要加俩剪枝的,

  • 当前枚举长度超过原串,直接break,换集合中的下一个串去接,
  • 如果当前接出来的串对答案无贡献,那也break,因为在一个没出现过的串上加字符,怎么加也不会再产生贡献。不加第二个只能拿20pts

用了个vector和map。

我也不知道为什么我要这么认真的讲暴力,大概因为只会写暴力吧QAQ

40pts
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#define MAX 10010
#define re register
namespace OMA
{
   int n,len[MAX];
   long long ans;
   char s[MAX],ch[MAX][MAX];
   std::map<std::vector<char>,int>vis;
   signed main()
   {
     //freopen("my.out","w",stdout);
     scanf("%s%d",s+1,&n);
     len[0] = strlen(s+1);
     //printf("\n");
     for(re int i=1; i<=len[0]; i++)
     {
       for(re int j=i+1; j<=len[0]; j++)
       {
         std::vector<char>str;
         for(re int k=i; k<=j; k++)
         { str.push_back(s[k]); }
         vis[str]++;
         //for(re int k=0; k<str.size(); k++)
         //{ printf("%c",str[k]); }
         //printf("\n");
         //printf("%d\n",vis[str]);
       }
     }
     for(re int i=1; i<=n; i++)
     { scanf("%s",ch[i]+1); len[i] = strlen(ch[i]+1); }
     for(re int i=1; i<=n; i++)
     {
       for(re int j=len[i]; j>=1; j--)
       {
         for(re int k=1; k<=n; k++)
         {
           for(re int l=1; l<=len[k]; l++)
           {
             if(l+len[i]-j+1>len[0])
             { break ; }
             std::vector<char>str;
             for(re int x=j; x<=len[i]; x++)
             { str.push_back(ch[i][x]); }
             for(re int x=1; x<=l; x++)
             { str.push_back(ch[k][x]); }
             if(!vis[str])
             { break ; }
             //printf("back:%d front:%d: ",i,k);
             //for(re int x=0; x<str.size(); x++)
             //{ printf("%c",str[x]); }
             //if(vis[str])
             //{ printf(" true %d",vis[str]); }
             //printf("\n");
             ans += vis[str];
           }
         }
       }
     }
     printf("%lld\n",ans);
     return 0;
   }
}
signed main()
{ return OMA::main(); }

正解还没改出来,所以先咕了。

T3

考场上推出了\(k=2\),但没想到也是\(k>5\) 的时候,加上当时脑抽,一心去推\(k=3\)的, 式子没推出来,其他式子还码错了。不过竟然能过样例

正解就是推式子。

原式子不想写了,直接看代码。

80pts
#include<cstdio>
#define MAX 300030
#define re register
#define int long long
namespace OMA
{   
   int c[MAX],inv[MAX];
   int t,n[MAX],m[MAX],k[MAX];
   const int p = 3e5+7;
   inline int read()
   {
     int s=0,w=1; char ch=getchar();
     while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
     while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
     return s*w;
   }
   inline int quickpow(int a,int b)
   {
     int ans = 1;
     while(b)
     {
       if(b&1)
       { ans = ans*a%p; }
       a = a*a%p;
       b >>= 1;
     }
     return ans;
   }
   inline int min(int a,int b)
   { return a<b?a:b; }
   inline int max(int a,int b)
   { return a>b?a:b; }
   inline int abs(int a)
   { return a>=0?a:0; }
   inline int C(int n,int m)
   { return m>n?0:c[n]*inv[n-m]%p*inv[m]%p; }
   inline int lucas(int n,int m)
   { return !m?1:C(n%p,m%p)*lucas(n/p,m/p)%p; }
   int ans;
   inline int sum1(int n)
   { return (n%p*(n%p+1))>>1; }
   inline int sum2(int n)
   { return (n%p-1)*n%p*(n%p+1)%p; }
   #define n n[i]
   #define m m[i]
   #define k k[i]
   inline void task0(int i)
   {
     ans = 0;
     for(re int a=1; a<=n; a++)
     {
       for(re int b=1; b<=m; b++)
       { (ans += lucas(min(a,b)-1,k-1)) %= p; }
     }
     ans = ans*2%p;
     (ans += lucas(n,k)*m%p+lucas(m,k)*n%p) %= p;
   } // OK
   inline void task1(int i)
   { ans = (n%p)*(m%p)%p; } // OK
   inline void task3(int i)
   {
     for(re int len=2; len<=m; len++)
     { (ans += 4*(n-len+1)%p*(m-len+1)%p) %= p; }
     for(re int len=1; len<=n/2; len++)
     { (ans += 2*abs(n-len)%p*abs(m-len-len)%p+2*abs(m-len)%p*abs(n-len-len)%p) %= p; }
   }
   inline void task4(int i)
   {
     for(re int len=2; len<=m; len++)
     { (ans += (n-len+1)%p*(m-len+1)%p)%= p ; }
     for(re int len=3; len<=m; len+=2)
     { (ans += 4*(n-len+1)%p*(m-len+1)%p) %= p; }
     for(re int len=1; len<=m/2; len++)
     { (ans += abs(n-len-len)%p*abs(m-len-len)%p) %= p; }
     for(re int len=1; len<=n/2; len++)
     { (ans += 2*abs(n-len)%p*abs(m-len-len)%p+2*abs(m-len)%p*abs(n-len-len)%p) %= p; }
   }
   inline void task5(int i)
   {
     for(re int len=3; len<=m; len+=2)
     { (ans += (n-len+1)%p*(m-len+1)%p) %= p; }
     for(re int len=1; len<=m/2; len++)
     { (ans += abs(n-len-len)%p*abs(m-len-len)%p) %= p; }
   }
   inline void swap(int &a,int &b)
   { int t=a; a=b; b=t; }
   signed main()
   {
     t = read();
     for(re int i=1; i<=t; i++)
     { n = read(),m = read(),k = read(); }
     int top = p-1;
     c[0] = inv[0] = 1;
     for(re int i=1; i<=top; i++)
     { c[i] = i*c[i-1]%p; }
     inv[top] = quickpow(c[top],p-2);
     for(re int i=top-1; i; i--)
     { inv[i] = (i+1)*inv[i+1]%p; }
     for(re int i=1; i<=t; i++)
     {
       if(n<m)
       { swap(n,m); }
       task0(i);
       if(k==1)
       { task1(i); }
       else if(k==2)
       { ; }
       else if(k==3)
       { task3(i); }
       else if(k==4)
       { task4(i); }
       else if(k==5)
       { task5(i); }
       else
       { ; }
       printf("%lld\n",ans);
     }
     return 0;
   }
}
signed main()
{ return OMA::main(); }

然而这过不了后两个点,会T,考虑将式子中的循环拆开。

目前正在化\(k=5\),等回头化出来,再补上吧。

posted @ 2021-07-27 23:59  -OMA-  阅读(89)  评论(0编辑  收藏  举报
浏览器标题切换
浏览器标题切换end