[OpenCV]Mat类详解
http://blog.csdn.net/yang_xian521/article/details/7107786
Preface
Mat:Matrix
Mat类可以被看做是opencv中C++版本的矩阵类,通俗的说就是操作矩阵(例如:求逆/转置/加减乘除等等,), 而图片的存储就是矩阵,所以经常用他来处理图片
Mat最大的优势跟STL很相似,有很多类似于STL的操作。但是Mat远远强于后者;二者都是对内存进行动态的管理,不需要之前用户手动的管理内存
Mat类的存储和数据类型
Mat的存储是逐行的存储的
• CV_8U - 8-bit unsigned integers ( 0..255 )
• CV_8S - 8-bit signed integers ( -128..127 )
• CV_16U - 16-bit unsigned integers ( 0..65535 )
• CV_16S - 16-bit signed integers ( -32768..32767 )
• CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
• CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
• CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
创建Mat类的对象
Mat这个类有两部分数据。
一个是矩阵头(matrix header),这部分大小固定,包含矩阵的大小,存储的方式,矩阵存储的地址等等。
另一个部分是一个指针: 指向矩阵所包含的像素数据
// make a 7x7 complex matrix filled with 1+3j. Mat M(7,7,CV_32FC2,Scalar(1,3)); // and now turn M to a 100x60 15-channel 8-bit matrix. // The old content will be deallocated M.create(100,60,CV_8UC(15));
创建一个M矩阵,7行7列,类型为CV_32F,C2表示有2个通道。Scalar(1,3)是对矩阵进行初始化赋值。第一个通道全为1,第2个通道全为3。具体见一下:
scalar是将图像设置成单一灰度和颜色,怪不得叫scalar(标量/纯量)。
Mat rawImg(600, 500, CV_8UC3, Scalar(255, 0, 0));
运行结果:
Mat类的矩阵操作
Row 行 Column列操作
// add the 5-th row, multiplied by 3 to the 3rd row M.row(3) = M.row(3) + M.row(5)*3; // now copy the 7-th column to the 1-st column // M.col(1) = M.col(7); // this will not work Mat M1 = M.col(1); M.col(7).copyTo(M1);
注意对列操作时要新建一个Mat,我想应该跟列地址不连续有关
接收指针指向的数据流
对于外来的数据,比如你从别的地方接受了一幅图片,但可以不是Mat结构的,而只有一个数据的指针,看看接下来的代码是如何应付的,
void process_video_frame(const unsigned char* pixels,int width, int height, int step) { Mat img(height, width, CV_8UC3, pixels, step); GaussianBlur(img, img, Size(7,7), 1.5, 1.5); }
快速初始化数据
double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; Mat M = Mat(3, 3, CV_64F, m).inv();
也可以把原来的IplImage格式的图片直接用Mat(IplImage)的方式转成Mat结构,
也可以像Matlab一样调用zeros()、ones()、eye()这样的函数进行初始化。
内存释放
如果你需要提前释放数据的指针和内存,可以调用release()。
数据的获取
调用at<float>(3, 3)这样的格式为最佳
需要注意的问题:
1 很多OpenCV的函数支持的数据深度只有8位和32位的,所以要少使用CV_64F,但是vs的编译器又会把float数据自动变成double型,有些不太爽。
2 流操作符<<对于Mat的操作,仅限于Mat是2维的情况。
3
Mat A, C; // creates just the header parts A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // here we’ll know the method used (allocate matrix) Mat B(A); // Use the copy constructor C = A; // Assignment operator
需要注意的是,copy这样的操作只是copy了矩阵的matrix header和那个指针,而不是矩阵的本身,也就意味着两个矩阵的数据指针指向的是同一个地址,需要开发者格外注意。
比如上面这段程序,A、B、C指向的是同一块数据,他们的header不同,但对于A的操作同样也影响着B、C的结果。
刚刚提到了内存自动释放的问题,那么当我不再使用A的时候就把内存释放了,那时候再操作B和C岂不是很危险?
不用担心,OpenCV的大神为我们已经考虑了这个问题,是在最后一个Mat不再使用的时候才会释放内存,咱们就放心用就行了。
如果想建立互不影响的Mat,是真正的复制操作,需要使用函数clone()或者copyTo()。