HDU 6038
Function
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1034 Accepted Submission(s): 464
Problem Description
You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1.
Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7.
Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7.
Input
The input contains multiple test cases.
For each case:
The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.
The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.
It is guaranteed that ∑n≤106, ∑m≤106.
For each case:
The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.
The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.
It is guaranteed that ∑n≤106, ∑m≤106.
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
3 2
1 0 2
0 1
3 4
2 0 1
0 2 3 1
Sample Output
Case #1: 4
Case #2: 4
Source
题意:
长度为n的数列a[0...n-1]和长度为m的数列b[0...m-1],求有多少个这样的函数f使得 f(i)=bf(ai),i属于[0,n-1];
代码:
//可以看出f在定义域[0,n-1]中是循环的,f的每个循环节中只要有一个f的值确定了那么其他的f的值也就确定了( //因为每相邻的两个f都相关),所以先找出a数列的所有的循环节然后在b中找f可以对应的值(同样是循环节),只有b //的某个循环节是a的某个循环节的因子时这两个循环节才能匹配,统计能匹配的个数,结果相乘。 #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; const int maxn=100009; const ll mod=1e9+7; int n,m,a[maxn],b[maxn]; int num1[maxn],num2[maxn];//num1[i]表示a数列第i个循环节的大小,num2[i]表示b数列长度为i的循环节的个数 int main() { int cas=0; while(scanf("%d%d",&n,&m)==2){ for(int i=0;i<n;i++) scanf("%d",&a[i]); for(int i=0;i<m;i++) scanf("%d",&b[i]); memset(num2,0,sizeof(num2)); memset(num1,0,sizeof(num1)); int tot=0; for(int i=0;i<n;i++){ if(a[i]==-1) continue; int ii=i; tot++; while(a[ii]!=-1){ num1[tot]++; int t=ii; ii=a[ii]; a[t]=-1; } } for(int i=0;i<m;i++){ if(b[i]==-1) continue; int ii=i,len=0; while(b[ii]!=-1){ len++; int t=ii; ii=b[ii]; b[t]=-1; } num2[len]++; } ll sum=1; for(int i=1;i<=tot;i++){ ll cnt=0; for(int j=1;j<=num1[i];j++){ if(num1[i]%j==0){ cnt+=num2[j]*j; cnt%=mod; } } sum*=cnt; sum%=mod; } printf("Case #%d: %lld\n",++cas,sum); } return 0; }