*HDU1848 博弈
Fibonacci again and again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8074 Accepted Submission(s): 3357
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
m=n=p=0则表示输入结束。
lcy
于nim游戏的某个位置(x1,x2,x3),当且仅当它各部分的nim-sum等于0时(即x1⊕x2⊕x3=0),则当前位于必败点
这道题用到了上面那个定理,有3堆,每次只能从每堆那里移除斐波那契数的石子。由于每堆有不同的取法,所以把可能出现同种情况的数字归为一类。称为等价类。每一个类又对应一个数叫做等价类数
等价类数的算法(0其实就是必败的点,对于一堆来说)
e[0]=0;
等价类数 E[i] 的算法:
从i个中取走 fib[1],fib[2],...,fib[j]<=i 个后剩下i-fib[1], i-fib[2],..., i-fib[j]个
他们的等价类数中没有出现的最小数就是i的等价类数
例如 i=1,
取走fib[1]=1个 i-fib[1]=0,0的等价类数是0,没有出现的最小数就是1
e[1]=1;
例如 i=2,
取走fib[1]=1个
i-fib[1]=1,取走fib[2]=2个 i-fib[1]=0,
1和0的等价类数是1,0,没有出现的最小数就是2
e[2]=2;
例如 i=3
取走fib[1]=1个 i-fib[1]=2,取走fib[2]=2个 i-fib[1]=1,取走fib[3]=3个 i-fib[1]=0,
2,1和0的等价类数是2,1,0,没有出现的最小数就是3
e[3]=3;
例如 i=4
取走fib[1,2,3]=1,2,3个 剩下3,2,1,没有出现的最小数就是0
e[4]=0; 4是必败点
例如 i=5
取走fib[1,2,3,4]=1,2,3,5个 剩下4,3,2,0,等价类数是 0,3,2,0没有出现的最小数就是1(e(4)=0)
e[5]=1;
例如 i=6
取走fib[1,2,3,4]=1,2,3,5个 剩下5,4,3,1,等价类数是e[5],e[4],e[3],e[1],即1,0,3,1,没有出现的最小的是2 e[6]=2;
打表,这样就得到了一个等价类数数组。接着就运用那个定理,如果一开始就出现必败点,即(e[n] ^ e[m] ^ e[p]) == 0。那么按照最优走法则必输。其它情况必赢。
代码:
1 #include<iostream> 2 #include<cstring> 3 using namespace std; 4 int main() 5 { 6 int a,b,c,f[502],e[1003],m[1003]; 7 f[0]=1;f[1]=1; 8 e[0]=0;e[1]=1;e[2]=2;e[3]=3; 9 for(int i=2;i<=500;i++) 10 f[i]=f[i-1]+f[i-2]; 11 for(int i=4;i<=1000;i++) 12 { 13 memset(m,0,sizeof(m)); 14 for(int j=1;f[j]<=i;j++) 15 { 16 m[e[i-f[j]]]=1; 17 } 18 for(int j=0;j<=i+1;j++) 19 if(m[j]==0) 20 {e[i]=j;break;} 21 } 22 while(cin>>a>>b>>c,a,b,c) 23 { 24 if(e[a]^e[b]^e[c]) cout<<"Fibo\n"; 25 else cout<<"Nacci\n"; 26 } 27 return 0; 28 }