*HDU 1757 矩阵乘法
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4307 Accepted Submission(s): 2586
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
Author
linle
Source
题意:
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
上面的递推式计算f(k)。计算结果%m;
代码:
1 //普通递推会超时,用矩阵乘法。构造矩阵时右上角的(n-1)*(n-1)矩阵置为单位矩阵,第n行从 右 到 左 填入系数,快速幂之后第n行作为行矩阵乘递推式从 小 到 大 排列的列矩阵得到结果 2 //或者构造左下角的单位矩阵,第一行从 左 到 右 填入系数,快速幂之后第1行作为行矩阵乘递推式从 大 到 小 排列的列矩阵得到结果 3 #include<bits\stdc++.h> 4 using namespace std; 5 int a[12],f[12]={0,1,2,3,4,5,6,7,8,9}; 6 int k,m; 7 struct Lu 8 { 9 int mp[12][12]; 10 }L1; 11 void init() 12 { 13 memset(L1.mp,0,sizeof(L1.mp)); 14 for(int i=0;i<=8;i++) 15 { 16 L1.mp[i][i+1]=1; 17 } 18 for(int i=0;i<=9;i++) 19 { 20 L1.mp[9][i]=a[9-i]; 21 } 22 } 23 Lu mult(Lu a,Lu b) 24 { 25 Lu c; 26 for(int i=0;i<=9;i++) 27 for(int j=0;j<=9;j++) 28 { 29 c.mp[i][j]=0; 30 for(int k=0;k<=9;k++) 31 c.mp[i][j]+=(a.mp[i][k]*b.mp[k][j])%m; 32 c.mp[i][j]%=m; 33 } 34 return c; 35 } 36 Lu solve(int x) 37 { 38 if(x==1) 39 return L1; 40 if(x&1) 41 { 42 Lu q=solve(x-1); 43 return mult(q,L1); 44 } 45 else 46 { 47 Lu q=solve(x/2); 48 return mult(q,q); 49 } 50 } 51 int main() 52 { 53 while(scanf("%d%d",&k,&m)!=EOF) 54 { 55 for(int i=0;i<=9;i++) 56 scanf("%d",&a[i]); 57 if(k<10) 58 { 59 printf("%d\n",k%m); 60 continue; 61 } 62 init(); 63 Lu tem=solve(k-9); 64 int ans=0; 65 for(int i=0;i<=9;i++) 66 ans+=(tem.mp[9][i]*f[i])%m; 67 printf("%d\n",ans%m); 68 } 69 return 0; 70 }
1 //普通递推会超时,用矩阵乘法。 2 #include<bits\stdc++.h> 3 using namespace std; 4 int a[12],f[12]={9,8,7,6,5,4,3,2,1,0}; 5 int k,m; 6 struct Lu 7 { 8 int mp[12][12]; 9 }L1; 10 void init() 11 { 12 memset(L1.mp,0,sizeof(L1.mp)); 13 for(int i=1;i<=9;i++) 14 { 15 L1.mp[i][i-1]=1; 16 } 17 for(int i=0;i<=9;i++) 18 { 19 L1.mp[0][i]=a[i]; 20 } 21 } 22 Lu mult(Lu a,Lu b) 23 { 24 Lu c; 25 for(int i=0;i<=9;i++) 26 for(int j=0;j<=9;j++) 27 { 28 c.mp[i][j]=0; 29 for(int k=0;k<=9;k++) 30 c.mp[i][j]+=(a.mp[i][k]*b.mp[k][j])%m; 31 c.mp[i][j]%=m; 32 } 33 return c; 34 } 35 Lu solve(int x) 36 { 37 if(x==1) 38 return L1; 39 if(x&1) 40 { 41 Lu q=solve(x-1); 42 return mult(q,L1); 43 } 44 else 45 { 46 Lu q=solve(x/2); 47 return mult(q,q); 48 } 49 } 50 int main() 51 { 52 while(scanf("%d%d",&k,&m)!=EOF) 53 { 54 for(int i=0;i<=9;i++) 55 scanf("%d",&a[i]); 56 if(k<10) 57 { 58 printf("%d\n",k%m); 59 continue; 60 } 61 init(); 62 Lu tem=solve(k-9); 63 int ans=0; 64 for(int i=0;i<=9;i++) 65 ans+=(tem.mp[0][i]*f[i])%m; 66 printf("%d\n",ans%m); 67 } 68 return 0; 69 }