HDU1003 DP
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 221949 Accepted Submission(s): 52183
Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
题意:
求最大连续子序列和
代码:
1 //水 2 #include<iostream> 3 #include<cstdio> 4 #include<cstring> 5 using namespace std; 6 int main() 7 { 8 int t,n; 9 scanf("%d",&t); 10 for(int k=1;k<=t;k++) 11 { 12 int dp[100005][3]; 13 memset(dp,0,sizeof(dp)); 14 int a[100005]; 15 scanf("%d",&n); 16 for(int i=1;i<=n;i++) 17 scanf("%d",&a[i]); 18 dp[1][0]=a[1]; 19 dp[1][1]=1; 20 dp[1][2]=1; 21 for(int i=2;i<=n;i++) 22 { 23 if(dp[i-1][0]<0) 24 { 25 dp[i][0]=a[i]; 26 dp[i][1]=i; 27 dp[i][2]=i; 28 } 29 else 30 { 31 dp[i][2]=i; 32 dp[i][1]=dp[i-1][1]; 33 dp[i][0]=a[i]+dp[i-1][0]; 34 } 35 } 36 int tem=-200000000,temi; 37 for(int i=1;i<=n;i++) 38 { 39 if(dp[i][0]>tem) 40 {tem=dp[i][0];temi=i;} 41 } 42 printf("Case %d:\n",k); 43 printf("%d %d %d\n",dp[temi][0],dp[temi][1],dp[temi][2]); 44 if(k!=t) printf("\n"); 45 } 46 return 0; 47 }