Codeforces | CF1037D 【Valid BFS?】
题目大意:给定一个\(n(1\leq n\leq 2\cdot10^5)\)个节点的树的\(n-1\)条边和这棵树的一个\(BFS\)序\(a_1,a_2,\dots,a_n\),判断这个\(BFS\)序是否是一个从节点\(1\)开始的合法\(BFS\)序,若合法则输出\(Yes\),否则输出\(No\)
题目核心问题是判断给出的\(BFS\)序的合法性,根据\(BFS\)的定义,每个节点的所有子节点在加入队列时应当是连续的,且同深度的节点的子节点入队顺序应该整体与父节点入队顺序相同,不妨把每个节点的所有子节点在给定的\(BFS\)序列中的顺序看做连续的区间.
考虑到\(BFS\)序列不合法的原因有以下可能:
- \(a_1\neq 1\)
- 存在\(i,j\)满足\(i<j\)且\(dep[a_i]>dep[a_j]\)
- 存在\(i,j\)满足\(i\neq j\)且\(a_i=a_j\)
- 存在\(i,j\)满足\(i<j\)且\(a_i\)的某个子节点\(u\)与\(a_j\)的某个子节点\(v\)满足在\(BFS\)序中\(u\)在\(v\)之后
处理思路:对于给出的树先跑一边\(BFS\)求每个点的\(dep\)和其子节点在\(a\)序列中的位置区间,按照上述四种情况进行判断.
下面放\(AC\)代码\(\downarrow\downarrow\downarrow\)
#include<cstdio>//CF1037D
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<queue>
using namespace std;
const int N=200010,NN=400020;
struct interval{
int l,r;
};
int fr[N],edge[NN],nxt[NN],n,dep[N],vis[N],app[N],a[N],fa[N],dy[N];
interval il[N];
queue<int>q;
void bfs(){
q.push(1);
dep[1]=1;
int u;
while(!q.empty()){
u=q.front();
vis[u]=1;
q.pop();
int now=fr[u],v;
while(now){
v=edge[now];
if(!vis[v]){
dep[v]=dep[u]+1;
fa[v]=u;
q.push(v);
il[u].l=min(il[u].l,dy[v]);
il[u].r=max(il[u].r,dy[v]);
}
now=nxt[now];
}
}
}
bool check(){
if(a[1]!=1){
return false;
}
int nowdep;
for(int i=1;i<=n;i++){
if(dep[a[i]]<nowdep||app[a[i]]){
return false;
}
else{
app[a[i]]=1;
nowdep=dep[a[i]];
}
}
int tr=1;
for(int i=1;i<=n;i++){
if(il[a[i]].l==200010){
continue;
}
if(il[a[i]].l>tr){
tr=il[a[i]].r;
}
else{
return false;
}
}
return true;
}
int main(){
scanf("%d",&n);
int u,v;
for(int i=1;i<=n;i++){
il[i].l=200010;
il[i].r=0;
}
for(int i=1;i<n;i++){
int j=i+n;
scanf("%d%d",&u,&v);
edge[i]=v;
nxt[i]=fr[u];
fr[u]=i;
edge[j]=u;
nxt[j]=fr[v];
fr[v]=j;
}
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
dy[a[i]]=i;
}
bfs();
if(check()){
printf("Yes\n");
return 0;
}
else{
printf("No\n");
return 0;
}
return 0;
}