【转】欧拉函数

【转】欧拉函数

 

     对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。例如euler(8)=4,因为1,3,5,7均和8互质。
     Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。 
     欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。

     那么如何变成实现欧拉函数呢?下面通过两种不同的方法来实现。第一种方法是直接根据定义来实现,同时第一种方法也是第二种筛法的基础,当好好理解。

 

//直接求解欧拉函数
int euler(int n){ //返回euler(n) 
     int res=n,a=n;
     for(int i=2;i*i<=a;i++){
         if(a%i==0){
             res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 
             while(a%i==0) a/=i;
         }
     }
     if(a>1) res=res/a*(a-1);
     return res;
}

//筛选法打欧拉函数表 
#define Max 1000001
int euler[Max];
void Init(){ 
     euler[1]=1;
     for(int i=2;i<Max;i++)
       euler[i]=i;
     for(int i=2;i<Max;i++)
        if(euler[i]==i)
           for(int j=i;j<Max;j+=i)
              euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出 
}
View Code

下面是我自己的模版(其实没什么不一样,只是更符合我的代码习惯而已)

int euler[maxn];

void Init()
{
    euler[1]=1;
    for(int i=2;i<maxn;i++) euler[i]=i;
    for(int i=2;i<maxn;i++){
        if(euler[i]==i){
            for(int j=i;j<maxn;j+=i) euler[j]=euler[j]/i*(i-1);
        }
    }
}
View Code

 

posted @ 2015-06-01 21:05  __560  阅读(247)  评论(0编辑  收藏  举报