poj1426——数的bfs,打表
POJ 1426 数的bfs,打表
Find The Multiple
Time Limit: 1000MS | Memory Limit: 10000K | |||
Total Submissions: 19409 | Accepted: 7868 | Special Judge |
Description
Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.
Input
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input
2 6 19 0
Sample Output
10 100100100100100100 111111111111111111
题意:找出被n整除的任意一个每一位中只有1和0的数
方法:直接bfs从小到大按位遍历只有1和0的数,由于题目输入一个n,可以打表
//poj1426_bfs #include<iostream> #include<cstdlib> #include<cstdio> #include<cstring> #include<algorithm> #include<queue> using namespace std; const int maxn=100020; int n; long long bfs() //注意要用long long { queue<long long> q; q.push(1); while(!q.empty()){ long long now=q.front(); q.pop(); if(now%n==0) return now; q.push(now*10); //遍历只有每一位上0和1的数 q.push(now*10+1); } return -1; } int main() { while(cin>>n,n){ cout<<bfs()<<endl; } return 0; }
//表中数据来自bfs #include<iostream> #include<cstdlib> #include<cstdio> #include<cstring> #include<algorithm> #include<queue> using namespace std; const int maxn=100020; int n; long long a[]={ //注意long long 1,10,111,100,10, 1110,1001,1000,111111111,10, 11,11100,1001,10010,1110, 10000,11101,1111111110,11001,100, 10101,110,110101,111000,100, 10010,1101111111,100100,1101101,1110, 111011,100000,111111,111010,10010, 11111111100,111,110010,10101,1000, 11111,101010,1101101,1100,1111111110, 1101010,10011,1110000,1100001,100, 100011,100100,100011,11011111110,110, 1001000,11001,11011010,11011111,11100, 100101,1110110,1111011111,1000000,10010, 1111110,1101011,1110100,10000101,10010, 10011,111111111000,10001,1110,11100, 1100100,1001,101010,10010011,10000, 1111111101,111110,101011,1010100,111010, 11011010,11010111,11000,11010101,1111111110, 1001,11010100,10000011,100110,110010, 11100000,11100001,11000010,111111111111111111,100, 101,1000110,11100001,1001000,101010, 1000110,100010011,110111111100,1001010111,110, 111,10010000,1011011,110010,1101010, 110110100,10101111111,110111110,100111011,111000, 11011,1001010,10001100111,11101100,1000, 11110111110,11010011,10000000,100100001,10010, 101001,11111100,11101111,11010110,11011111110, 11101000,10001,100001010,110110101,100100, 10011,100110,1001,1111111110000,11011010, 100010,1100001,11100,110111,11100, 1110001,11001000,10111110111,10010,1110110, 1010100,10101101011,100100110,100011,100000, 11101111,11111111010,1010111,1111100,1111110, 1010110,11111011,10101000,10111101,111010, 1111011111,110110100,1011001101,110101110,100100, 110000,100101111,110101010,11010111,11111111100, 1001111,10010,100101,110101000,1110, 100000110,1001011,1001100,1010111010111,110010, 11101111,111000000,11001,111000010,101010, 110000100,1101000101,1111111111111111110,111000011,1000, 10010001,1010,11010111,10001100,111110, 111000010,11011111011,10010000,100111,101010, 110100011,10001100,10011,1000100110,11011010, 1101111111000,10000011,10010101110,1110111,1100, 100111011,1110,1001111001,100100000,11111111100, 10110110,11001101,1100100,10000100011,1101010, 111111,1101101000,111110011,101011111110,100110, 1101111100,101010111,1001110110,1111111,1110000, 111101,110110,100111110111,10010100,11000010, 100011001110,1000000001,111011000,1111100001,1000, 110001001,111101111100,11111001,110100110,1000110, 100000000,101001,1001000010,10101,100100, 10111101111,1010010,10001101,111111000,1000110, 111011110,1011111111,110101100,100100011,11011111110, 11111,111010000,10101,100010,1100, 1000010100,110111101,1101101010,11111010111,1001000, 101000111,100110,10010111011,1001100,110010, 10010,1011101,11111111100000,1100110001,11011010, 100110111,1000100,110000111,11000010,110111110, 111000,1111011111111111111,1101110,10010101101,11100 }; int main() { while(cin>>n,n){ cout<<a[n-1]<<endl; } return 0; }
没有AC不了的题,只有不努力的ACMER!