Multiple(poj1465)

Multiple
Time Limit: 1000MS   Memory Limit: 32768K
Total Submissions: 7183   Accepted: 1540

Description

a program that, given a natural number N between 0 and 4999 (inclusively), and M distinct decimal digits X1,X2..XM (at least one), finds the smallest strictly positive multiple of N that has no other digits besides X1,X2..XM (if such a multiple exists).

Input

The input has several data sets separated by an empty line, each data set having the following format:

On the first line - the number N
On the second line - the number M
On the following M lines - the digits X1,X2..XM.

Output

For each data set, the program should write to standard output on a single line the multiple, if such a multiple exists, and 0 otherwise.

An example of input and output:

Sample Input

22
3
7
0
1

2
1
1

Sample Output

110
0
题意:用下面所给的数字这些数构成的数字中找到是k的最小的倍数,每个数能用多次。
思路:bfs;
首先如果k为0的时候需要特判,然后将所给的数按升序排列,然后BFS的时候就能保证先被广搜到的数小。
然后这样会爆,所以需要剪枝。
我们要找的是k的倍数,那么这个数modk=0;然后看到k的范围很小。
假如两个数A,B;
A=n*k+s;B=m*k+s;
也就是A=B(modk);那么当这两数去搜下一层的时候,A*10+b[i];
B*10+b[i];那么这两个数对于k取余相等,所以我们只要将小的数加入队列。那么每个模数在队列中就出现一次就行,队列中的元素最多k个

还有这个数了可能很大,所以用静态数组记录前驱去找数。
C++超时,G++100多MS
  1 #include <cstdio>
  2 #include <cstdlib>
  3 #include <cstring>
  4 #include <cmath>
  5 #include <iostream>
  6 #include <algorithm>
  7 #include <map>
  8 #include <queue>
  9 #include <vector>
 10 #include<set>
 11 using namespace std;
 12 typedef long long LL;
 13 bool flag[6000];
 14 int ans[20];
 15 set<int>que;
 16 set<int>::iterator it;
 17 typedef struct pp
 18 {
 19         int mod;
 20         int id;
 21         int pre;
 22         int digit;
 23         pp()
 24         {
 25             pre=-1;
 26         }
 27 } ss;
 28 ss bns[1000000];
 29 int ask[1000000];
 30 int cp[2000000];
 31 int  bfs(int n,int m);
 32 int main(void)
 33 {
 34         int i,j,k;
 35         while(scanf("%d",&k)!=EOF)
 36         {
 37                 int n;
 38                 int m;
 39                 que.clear();
 40                 scanf("%d",&n);
 41                  for(i=0;i<n;i++)
 42                  {
 43                      scanf("%d",&cp[i]);
 44                  }
 45                  sort(cp,cp+n);
 46                  ans[0]=cp[0];
 47                 int uu=cp[0];
 48                 int t=1;
 49                  for(i=1;i<n;i++)
 50                  {
 51                      if(cp[i]!=uu)
 52                      {
 53                          ans[t++]=cp[i];
 54                          uu=cp[i];
 55                      }
 56                  }
 57 
 58                 if(k==0)printf("0\n");
 59                 else
 60                 {
 61                         int sum=0;
 62                         int id=bfs(t,k);
 63                         if(id==-1)
 64                         {
 65                                 printf("0\n");
 66                         }
 67                         else
 68                         {
 69                                 while(id!=-1)
 70                                 {
 71                                         ask[sum++]=bns[id].digit;
 72                                         id=bns[id].pre;
 73                                 }
 74                                 for(i=sum-1; i>=0; i--)
 75                                 {
 76                                         printf("%d",ask[i]);
 77                                 }
 78                                 printf("\n");
 79                         }
 80                 }
 81         }
 82         return 0;
 83 }
 84 int  bfs(int n,int m)
 85 {
 86         int i,j,k;
 87         int kk=0;
 88         memset(flag,0,sizeof(flag));
 89         queue<ss>stc;
 90         for(i=0; i<n; i++)
 91         {
 92                 int mod=ans[i]%m;
 93                 if(!flag[mod]&&ans[i]!=0)
 94                 {
 95                         flag[mod]=true;
 96                         bns[kk].id=kk;
 97                         bns[kk].mod=mod;
 98                         bns[kk].pre=-1;
 99                         bns[kk].digit=ans[i];
100                         stc.push(bns[kk]);
101                         kk++;
102                 }
103         }
104         while(!stc.empty())
105         {
106                 ss tt=stc.front();
107                 stc.pop();
108                 for(i=0; i<n; i++)
109                 {
110                         int mod=(tt.mod*10+ans[i])%m;
111                         if(!flag[mod])
112                         {
113                                 bns[kk].id=kk;
114                                 bns[kk].pre=tt.id;
115                                 bns[kk].mod=mod;
116                                 bns[kk].digit=ans[i];
117                                 if(mod==0)
118                                 {
119                                         return kk;
120                                 }
121                                 stc.push(bns[kk]);
122                                 kk++;
123                                 flag[mod]=true;
124                         }
125                 }
126         }
127         return -1;
128 }

 


posted @ 2016-08-03 10:11  sCjTyC  阅读(407)  评论(0编辑  收藏  举报