codevs3002 石子归并 3

题目描述 Description

有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1]。问安排怎样的合并顺序,能够使得总合并代价达到最小。

输入描述 Input Description

第一行一个整数n(n<=3000)

第二行n个整数w1,w2...wn  (wi <= 3000)

输出描述 Output Description

一个整数表示最小合并代价

样例输入 Sample Input

4

4 1 1 4

样例输出 Sample Output

18

数据范围及提示 Data Size & Hint

数据范围相比“石子归并” 扩大了

 

也没啥好说的,

就是四边形不等式优化

证明我也不会

丢个博客链接

 

http://blog.csdn.net/noiau/article/details/72514812

 

 

#include<cstdio>
#include<cstring>
const int MAXN=1e5+10,INF=1e8+10;
using namespace std;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin)),p1==p2?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}
    return x*f;
}
int dp[3001][3001],sum[MAXN],s[3001][3001];
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    int N=read();
    for(int i=1;i<=N;i++) sum[i]=read(),sum[i]+=sum[i-1],s[i][i]=i;
    for(int i=N;i>=1;i--) 
    {
        for(int j=i+1;j<=N;j++)
        {
            int mn=INF,mnpos=0;
            for(int k=s[i][j-1];k<=s[i+1][j];k++)
            {
                if(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1] < mn)
                {
                    mn=dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];
                    mnpos=k;
                }
            }
            dp[i][j]=mn;
            s[i][j]=mnpos;
        }
    } 
    printf("%d",dp[1][N]);
    return 0;
}

 

posted @ 2018-02-20 19:40  自为风月马前卒  阅读(645)  评论(0编辑  收藏  举报

Contact with me