HDU 1573 X问题

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7221    Accepted Submission(s): 2551


Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
 

 

Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
 

 

Output
对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
 

 

Sample Input
3 10 3 1 2 3 0 1 2 100 7 3 4 5 6 7 8 9 1 2 3 4 5 6 7 10000 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
 

 

Sample Output
1 0 3
 

 

Author
lwg
 

 

Source
 

 

Recommend
linle   |   We have carefully selected several similar problems for you:  1788 1695 1452 1060 1299 
 

 

还是裸的扩展CRT

注意边界情况

题目中有X=0的坑数据,注意特判

 

#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long 
using namespace std;
const int MAXN=1e6+10;
int N,K,C[MAXN],M[MAXN],x,y;
int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
int exgcd(int a,int b,int &x,int &y)
{
    if(b==0){x=1,y=0;return a;}
    int r=exgcd(b,a%b,x,y),tmp;
    tmp=x;x=y;y=tmp-(a/b)*y;
    return r;
}
int inv(int a,int b)
{
    int r=exgcd(a,b,x,y);
    while(x<0) x+=b;
    return x;
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(M,0,sizeof(M));
        memset(C,0,sizeof(C));
        scanf("%d%d",&N,&K);
        for(int i=1;i<=K;i++) scanf("%d",&M[i]);
        for(int i=1;i<=K;i++) scanf("%d",&C[i]),C[i]%=M[i];
        bool flag=1;
        for(int i=2;i<=K;i++)
        {
            int M1=M[i-1],M2=M[i],C2=C[i],C1=C[i-1],T=gcd(M1,M2);
            if((C2-C1)%T!=0) {flag=0;break;}
            M[i]=(M1*M2)/T;
            C[i]= ( inv( M1/T , M2/T ) * (C2-C1)/T ) % (M2/T) * M1 + C1;
            C[i]=(C[i]%M[i]+M[i])%M[i];
        }
        if(flag==0) printf("0\n");
        else
        {
            if(N<C[K]) printf("0\n");
            else
            {
                int ans=(N-C[K])/M[K]+1;
                //if(C[K]) ans++;
                printf("%d\n",ans);
            } 
                
        }    
    }
    return 0;
}

 

posted @ 2018-02-07 11:09  自为风月马前卒  阅读(456)  评论(0编辑  收藏  举报

Contact with me