(二十三)原型模式详解(clone方法源码的简单剖析)
作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可。
原型模式算是JAVA中最简单的设计模式了,原因是因为它已经被提供了语言级的支持,但是如果提到它的实现原理,又是最复杂的一个设计模式。
下面我们先来看看这个又简单又复杂的设计模式的定义。
定义:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。
定义比较简单,总结一下是通过实例指定种类,通过拷贝创建对象。
在JAVA语言中使用原型模式是非常简单的,这是因为Object类当中提供了一个本地方法clone,而JAVA中的任何类只要实现了Cloneable标识接口,就可以使用clone方法来进行对象的拷贝。
我们写一个简单的实例来测试一下,很简单。
package com.prototype; public class Prototype implements Cloneable { private int x; private int y; private int z; public Prototype() { this.x = 2; this.y = 3; this.z = 4; } public void change() { this.x = 9; this.y = 8; this.z = 7; } public Prototype clone() { Object object = null; try { object = super.clone(); } catch (CloneNotSupportedException exception) { throw new RuntimeException(exception); } return (Prototype) object; } public String toString() { return "[" + x + "," + y + "," + z + "]"; } public static void main(String[] args) { Prototype prototype1 = new Prototype(); prototype1.change(); System.out.println(prototype1); Prototype prototype2 = prototype1.clone(); System.out.println(prototype2); } }
输入结果:
[9,8,7]
[9,8,7]
从输出结果可以看出来,clone方法将prototype1复制了一个,然后赋给了prototype2,这就像复制粘贴一样。值得注意的是,在使用Object.clone()方法去拷贝一个对象时,构造方法是不被执行的,否则prototype2实例中x,y,z的值应该为2,3,4才对,如果你觉得不够直观,可以在构造方法里写一个输出语句试试。
从原型模式的使用方式不难推断出,原型模式常使用于以下场景:
1、对象的创建非常复杂,可以使用原型模式快捷的创建对象。
2、在运行过程中不知道对象的具体类型,可使用原型模式创建一个相同类型的对象,或者在运行过程中动态的获取到一个对象的状态。
对于clone方法,它执行的是浅拷贝,也就是说如果是引用类型的属性,则它不会进行拷贝,而是只拷贝引用。
看下面这个简单的测试,就能看出来了。
package com.prototype; class Field{ private int a; public int getA() { return a; } public void setA(int a) { this.a = a; } } public class ShallowPrototype implements Cloneable { private int x; private int y; private int z; private Field field; public ShallowPrototype() { this.x = 2; this.y = 3; this.z = 4; this.field = new Field(); this.field.setA(5); } public Field getField() { return field; } public ShallowPrototype clone() { Object object = null; try { object = super.clone(); } catch (CloneNotSupportedException exception) { throw new RuntimeException(exception); } return (ShallowPrototype) object; } public String toString() { return "[" + x + "," + y + "," + z + "," + field.getA() + "]"; } public static void main(String[] args) { ShallowPrototype prototype1 = new ShallowPrototype(); System.out.println(prototype1); System.out.println(prototype1.getField()); ShallowPrototype prototype2 = prototype1.clone(); System.out.println(prototype2); System.out.println(prototype2.getField()); } }
输入结果:
[2,3,4,5]
com.prototype.Field@de6ced
[2,3,4,5]
com.prototype.Field@de6ced
可以看到我们对ShallowPrototype拷贝以后,得到一个实例prototype2,不过当我们输出field属性时,发现它们是引用的同一个对象。这当然不是我们期望得到的结果,这种情况下,我们如果修改prototype1中field的属性a的值,则prototype2中的也会跟着改变。
然而如果要实现深度拷贝,则需要将实现了Cloneable接口并重写了clone方法的类中,所有的引用类型也全部实现Cloneable接口并重写clone方法,而且需要将引用类型的属性全部拷贝一遍。
下面是一个简单的深度拷贝的例子,由上面的例子更改得到。
package com.prototype; class Field implements Cloneable{ private int a; public int getA() { return a; } public void setA(int a) { this.a = a; } protected Field clone() { Object object = null; try { object = super.clone(); } catch (CloneNotSupportedException exception) { throw new RuntimeException(exception); } return (Field) object; } } public class DeepPrototype implements Cloneable { private int x; private int y; private int z; private Field field; public DeepPrototype() { this.x = 2; this.y = 3; this.z = 4; this.field = new Field(); this.field.setA(5); } public Field getField() { return field; } protected DeepPrototype clone() { Object object = null; try { object = super.clone(); ((DeepPrototype)object).field = this.field.clone(); } catch (CloneNotSupportedException exception) { throw new RuntimeException(exception); } return (DeepPrototype) object; } public String toString() { return "[" + x + "," + y + "," + z + "," + field.getA() + "]"; } public static void main(String[] args) { DeepPrototype prototype1 = new DeepPrototype(); System.out.println(prototype1); System.out.println(prototype1.getField()); DeepPrototype prototype2 = prototype1.clone(); System.out.println(prototype2); System.out.println(prototype2.getField()); } }
输出结果:
[2,3,4,5]
com.prototype.Field@a90653
[2,3,4,5]
com.prototype.Field@de6ced
下面我们来看下原型模式的主要优点:
1、由于clone方法是由虚拟机直接复制内存块执行,所以在速度上比使用new的方式创建对象要快。
2、可以基于原型,快速的创建一个对象,而无需知道创建的细节。
3、可以在运行时动态的获取对象的类型以及状态,从而创建一个对象。
然而原型模式的缺点也是相当明显的,主要的缺点就是实现深度拷贝比较困难,需要很多额外的代码量。
不过实际当中我们使用原型模式时,也可以写一个基类实现Cloneable接口重写clone方法,然后让需要具有拷贝功能的子类继承自该类,这是一种节省代码量的常用方式。像上面的例子一样,如果一个类继承自Prototype,则会自动具有拷贝功能。
下面我们来看看虚拟机中本地方法Object.clone()的源代码,如下。
JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle)) JVMWrapper("JVM_Clone"); Handle obj(THREAD, JNIHandles::resolve_non_null(handle)); const KlassHandle klass (THREAD, obj->klass()); JvmtiVMObjectAllocEventCollector oam; #ifdef ASSERT // Just checking that the cloneable flag is set correct if (obj->is_javaArray()) { guarantee(klass->is_cloneable(), "all arrays are cloneable"); } else { guarantee(obj->is_instance(), "should be instanceOop"); bool cloneable = klass->is_subtype_of(SystemDictionary::Cloneable_klass()); guarantee(cloneable == klass->is_cloneable(), "incorrect cloneable flag"); } #endif // Check if class of obj supports the Cloneable interface. // All arrays are considered to be cloneable (See JLS 20.1.5) if (!klass->is_cloneable()) {//这里检查了是否实现了Cloneable接口,如果没实现,会抛出异常CloneNotSupportException。 ResourceMark rm(THREAD); THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name()); } // Make shallow object copy const int size = obj->size();//取对象大小 oop new_obj = NULL; if (obj->is_javaArray()) {//如果是数组 const int length = ((arrayOop)obj())->length();//取长度 new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL);//分配内存,写入元数据信息 } else { new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);//分配内存,写入元数据信息 } // 4839641 (4840070): We must do an oop-atomic copy, because if another thread // is modifying a reference field in the clonee, a non-oop-atomic copy might // be suspended in the middle of copying the pointer and end up with parts // of two different pointers in the field. Subsequent dereferences will crash. // 4846409: an oop-copy of objects with long or double fields or arrays of same // won't copy the longs/doubles atomically in 32-bit vm's, so we copy jlongs instead // of oops. We know objects are aligned on a minimum of an jlong boundary. // The same is true of StubRoutines::object_copy and the various oop_copy // variants, and of the code generated by the inline_native_clone intrinsic. assert(MinObjAlignmentInBytes >= BytesPerLong, "objects misaligned"); Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj, (size_t)align_object_size(size) / HeapWordsPerLong);//这一步就是真正的COPY内存块了 // Clear the header new_obj->init_mark();//初始化对象头,里面包含了Hashcode,GC信息,锁信息等,因为拷贝出的对象是一个全新的对象,所以这些信息需要初始化一下。 // Store check (mark entire object and let gc sort it out) BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->has_write_region_opt(), "Barrier set does not have write_region"); bs->write_region(MemRegion((HeapWord*)new_obj, size));//write_region最终的实现在一个虚方法里,相当于JAVA的抽象方法,LZ没找到实现。暂不发表意见。 // Caution: this involves a java upcall, so the clone should be // "gc-robust" by this stage. if (klass->has_finalizer()) {//如果有finalize方法,则需要注册一下。 assert(obj->is_instance(), "should be instanceOop"); new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL); } return JNIHandles::make_local(env, oop(new_obj));//将内存对象转换成JAVA本地对象返回 JVM_END
虚拟机的源码比较复杂,而且完全没有相关文献和资料,所以LZ也只能简单的添加一些注释,特别是write_region这个方法,LZ没找到实现在哪里,LZ猜测这个方法的功能是设置对象的边界的,好让GC能够正确的回收内存,但由于没找到实现,所以不敢断言。
在上面的过程中调用了Copy对象的conjoint_jlongs_atomic方法,那个就是真正的复制实例数据的方法,LZ找到了这个方法的实现,给各位看一下。
void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) { if (from > to) { jlong *end = from + count; while (from < end) os::atomic_copy64(from++, to++); } else if (from < to) { jlong *end = from; from += count - 1; to += count - 1; while (from >= end) os::atomic_copy64(from--, to--); } }
这是一个操作内存块的方法,其中atomic_copy64这个方法是用汇编语言写的,它确保了在64位的机子下也可以正确的进行内存块的拷贝操作。它的作用很简单,就是把from指针指向的内存的值赋给to指针指向的内存,也就是一个简单的拷贝操作。知道了atomic_copy64方法的作用,上面这个方法的逻辑就非常简单了。
由此可以看出,我们可以将clone方法想象成内存块的复制操作,它的速度比一般的创建对象操作要快。
原型模式的分析就到此结束了,对于虚拟机源码的研究,LZ一直在断断续续的继续着,等设计模式系列写完以后,LZ会写一些虚拟机以及虚拟机源码的相关内容,希望各位能继续支持吧。
感谢各位的收看。