【codeforces 914H】Ember and Storm's Tree Game
Description
Ember和Storm正在玩游戏。首先,Ember构造一棵n个节点且每个节点度数不超过d的带节点编号的树T。然后,Storm选择两个不同的节点u和v,并写下从u到v路径上的节点编号,记为序列 a1, a2... ak 。最后,Ember在序列中选择一个位置 i(1 ≤ i < k),并在以下两个操作选择一个执行:
- 翻转 ai+1... ak 并将这一段加上ai,操作后序列变为 a1, ... ai, ak + ai, ak-1 + ai, ... ai+1 + ai
- 取负 ai+1... ak 并将这一段加上ai,操作后序列变为 a1, ... ai, - ai+1 + ai, - ai+2 + ai, ... - ak + ai
如果最后的序列是严格单调的,则Ember获胜,否则Storm获胜。
游戏情形可以用一个元组 (T, u, v, i, op) 来描述,op为翻转或是取负取决于Ember的决策。若Ember和Storm都使用最优策略(若有多种必胜策略,任选一种执行;若必败,也任选一种执行),试统计所有可能的游戏情形的数量,并输出其取模m的结果。
Input
仅一行,给出 n,d,m。 (2 ≤ n ≤ 200, 1 ≤ d < n, 1 ≤ m ≤ 2·109).
Output
输出一个数字——所有可能的游戏情形的数量取模m之后的结果。
首先,Ember一定会构造出一棵能让自己必胜的树。而Ember获胜当而仅当原序列$a$为单调的或是单峰的;且对于每一个合法的序列,有2种合法的$(i,op)$的组合。没有什么好证明的……在草稿纸上自己模拟一下两种操作就可以得到了。
问题转换为:统计满足以下条件的树的数量$S$:1. 包含$n$个节点,2. 每个节点度数不超过$d$,3. 树上任意两个节点间路径的编号序列为单调的或单峰的。最终答案为 $2\cdot n\cdot(n-1)\cdot S$ 。
而对于一棵合法的树,一定存在一个特殊点,满足以这个节点为起点或终点的所有路径都是单调的。为了方便统计,我们令合法树的根节点为特殊点。观察可得,对于一棵合法树,除根节点以外的子树都满足:父亲节点编号大于儿子编号,或是父亲编号小于儿子编号。所以我们只需要统计这两种情况的答案,然后在根节点处拼起来即可。而实际上,这两种情况是等价的。
令$f(i,j)$表示节点数为$i$,根节点度数为$j$,且父亲编号小于儿子编号的方案数。
枚举当前要拼接的子树大小$k$,钦定根节点编号最小,拼接过来的子树的根节点编号次小,可得到以下递推公式:
$$f(i,j)=\sum _{k=1}^{i-1}f(i-k,j-1)\cdot \binom{i-2}{k-1}\cdot \sum _{l=1}^{d-1}f(k,l)$$
令 $sum(i)=\sum _{j=1}^{d-1}f(i,j)$,可得:
$$f(i,j)=\sum _{k=1}^{i-1}f(i-k,j-1)\cdot \binom{i-2}{k-1}\cdot sum(k)$$
时间复杂度为 $O(n^{3})$ ,初始化 $f(1,0)=sum(1)=1$ 。
(这种方法是在评论区看到的……然后参考了一下wxh大爷的博客。官方题解给了另一种统计f数组的方式,要稍微复杂一些,以及因为不保证m是质数,会有一些细节需要处理。详见官方题解,细节处理详见评论区。)
统计出$f$数组后就可以开始拼接了,枚举满足父亲节点编号小于儿子编号的点数$i$、度数$j$, 满足父亲节点编号大于儿子编号的度数$k$,可得到以下公式:
$$S=\sum _{i=0}^{n-1}\sum _{j=0}^{d}\sum _{k=0}^{d-j}f(i+1,j)\cdot f(n-i,k)$$
而实际上一棵合法树是可以有多个合法根的,比如最简单的$n=2$的情况,合法根既可以是$1$也可以是$2$。我们可以得出另一个结论,如果一棵树有多个合法根,那么这些点一定构成一条单调链,一端是$j=1$且$k≠1$,另一端是$j≠1$且$k=1$,中间是$j=1$且$k=1$,我们把这棵树放在第一种情况统计。
得到最终公式:
$$S=\sum _{i=0}^{n-1}\sum _{j+k\leq d,k\neq 1}f(i+1,j)\cdot f(n-i,k)$$
代码如下:
1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #define LL long long 5 using namespace std; 6 const int N=205; 7 int n,d,mod; 8 LL ans,sum[N],c[N][N],f[N][N]; 9 int main() 10 { 11 scanf("%d%d%d",&n,&d,&mod); 12 for(int i=0;i<=n;i++)c[i][0]=1; 13 for(int i=1;i<=n;i++) 14 for(int j=1;j<=i;j++) 15 c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod; 16 sum[1]=1;f[1][0]=1; 17 for(int i=2;i<=n;i++) 18 { 19 for(int j=1;j<=d;j++) 20 for(int k=1;k<i;k++) 21 f[i][j]=(f[i][j]+f[i-k][j-1]*sum[k]%mod*c[i-2][k-1]%mod)%mod; 22 for(int j=1;j<=d-1;j++) 23 sum[i]=(sum[i]+f[i][j])%mod; 24 } 25 for(int i=0;i<=n-1;i++) 26 for(int j=0;j<=d;j++) 27 for(int k=0;j+k<=d;k++) 28 if(k!=1)ans=(ans+f[i+1][j]*f[n-i][k]%mod)%mod; 29 printf("%lld",2*n*(n-1)*ans%mod); 30 return 0; 31 }