打赏

Spark MLlib编程API入门系列之特征选择之向量选择(VectorSlicer)

 

 

 

  不多说,直接上干货!

 

  特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择)。

 

  VectorSlicer用于从原来的特征向量中切割一部分,形成新的特征向量,比如,原来的特征向量长度为10,我们希望切割其中的5~10作为新的特征向量,使用VectorSlicer可以快速实现。

 

   理论,见

机器学习概念之特征选择(Feature selection)之VectorSlicer算法介绍

 

 

 

完整代码

VectorSlicer .scala
package zhouls.bigdata.DataFeatureSelection


import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute}
import org.apache.spark.ml.feature.VectorSlicer//引入ml里的特征选择的VectorSlicer
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
 
/**
 * By  zhouls
 */
object VectorSlicer extends App {
    val conf = new SparkConf().setMaster("local").setAppName("VectorSlicer")
    val sc = new SparkContext(conf)
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    
    
    //构造特征数组
    val data = Array(Row(Vectors.dense(-2.0, 2.3, 0.0)))
    
    //为特征数组设置属性名(字段名),分别为f1 f2 f3
    val defaultAttr = NumericAttribute.defaultAttr
    val attrs = Array("f1", "f2", "f3").map(defaultAttr.withName)
    val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
    
    //构造DataFrame
    val dataRDD = sc.parallelize(data)
    val dataset = sqlContext.createDataFrame(dataRDD, StructType(Array(attrGroup.toStructField())))
    
    print("原始特征:")
    dataset.take(1).foreach(println)
    
    
    //构造切割器
    var slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    
    //根据索引号,截取原始特征向量的第1列和第3列
    slicer.setIndices(Array(0,2))
    print("output1: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    //根据字段名,截取原始特征向量的f2和f3
    slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    slicer.setNames(Array("f2","f3"))
    print("output2: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    //索引号和字段名也可以组合使用,截取原始特征向量的第1列和f2
    slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    slicer.setIndices(Array(0)).setNames(Array("f2"))
    print("output3: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    
}

 

 

 

 

 输出结果是

 

 

 

 

 

 

 

  python语言来编写

from pyspark.ml.feature import VectorSlicer  
from pyspark.ml.linalg import Vectors  
from pyspark.sql.types import Row  
  
df = spark.createDataFrame([  
    Row(userFeatures=Vectors.sparse(3, {0: -2.0, 1: 2.3}),),  
    Row(userFeatures=Vectors.dense([-2.0, 2.3, 0.0]),)])  
  
slicer = VectorSlicer(inputCol="userFeatures", outputCol="features", indices=[1])  
  
output = slicer.transform(df)  
  
output.select("userFeatures", "features").show()  

 

posted @ 2017-08-19 12:40  大数据和AI躺过的坑  阅读(1115)  评论(0编辑  收藏  举报