72. Edit Distance(编辑距离 动态规划)
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u'
1. 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
2. 确定递推公式
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换
3. dp数组如何初始化
再回顾一下dp[i][j]的定义:
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
4. 确定遍历顺序
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历。
class Solution { public: int minDistance(string word1, string word2) { int n = word1.size(); int m = word2.size(); int dp[n+1][m+1]; for(int i = 0;i <= n;++i) dp[i][0] = i; // word1的子串(i->n)与 word2空字符串的编辑距离 for(int j = 0;j <= m;++j) dp[0][j] = j; for(int i = 1;i <= n; ++i) { for(int j = 1;j<=m; ++j) { if(word1[i-1] == word2[j-1]) { //字符串下标从0开始。dp 下标从1开始。 dp[i][j] = dp[i-1][j-1]; } else { // dp[i-1][j] word1[i] 删除 // dp[i][j-1]. word2[j] 删除(等价于 word1增加) // dp[i-1][j-1]. word1[i]、word2[j]选一个替换 dp[i][j] = 1 + min({dp[i-1][j],dp[i][j-1],dp[i-1][j-1]}); } } } return dp[n][m]; } };
1 class Solution: 2 3 def minDistance(self, x, y): 4 """ 5 :type word1: str 6 :type word2: str 7 :rtype: int 8 """ 9 m = len(x) 10 n = len(y) 11 dp = [[' '] * (n + 1) for i in range(m + 1)] 12 13 for i in range(m + 1): 14 dp[i][0] = i 15 for j in range(n + 1): 16 dp[0][j] = j 17 18 for i in range(1, m + 1): 19 for j in range(1, n + 1): 20 if x[i - 1] == y[j - 1]: 21 dp[i][j] = dp[i - 1][j - 1] 22 else: 23 dp[i][j] = 1 + min(dp[i - 1][j], dp[i] 24 [j - 1], dp[i - 1][j - 1]) 25 return dp[m][n]