62. Unique Paths (走棋盘多少种不同的走法 动态规划)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
class Solution { public: int uniquePaths(int m, int n) { vector<vector<int>> dp = vector<vector<int>>(m,vector<int>(n,1)); //dp[0][0] = 1; //for (int i = 1 ; i <m; i++) { // dp[i][0] = 1; //} //for (int j = 1; j < n; j++) { // dp[0][j] = 1; //} for(int i = 1; i < m ; i++) { for(int j = 1; j< n; j++) { dp[i][j] = dp[i][j-1]+dp[i-1][j]; } } return dp[m-1][n-1]; } };
1 class Solution { 2 public int uniquePaths(int m, int n) { 3 int[][] dp = new int[m][n]; 4 for(int i = 0;i<m;i++) 5 dp[i][0] = 1; 6 for(int i = 0;i<n;i++) 7 dp[0][i] = 1; 8 for(int i =1;i<m;i++) 9 for (int j = 1;j < n;j++) 10 dp[i][j] = dp[i-1][j] + dp[i][j-1]; 11 return dp[m-1][n-1]; 12 } 13 }