62. Unique Paths (走棋盘多少种不同的走法 动态规划)

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

 

 

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp = vector<vector<int>>(m,vector<int>(n,1));
        //dp[0][0] = 1;
        //for (int i = 1 ; i <m; i++) {
        //    dp[i][0] = 1;
        //}
        //for (int j = 1; j < n; j++) {
        //    dp[0][j] = 1;
        //}
        for(int i = 1; i < m ; i++) {
            for(int j = 1; j< n; j++) {
                dp[i][j] = dp[i][j-1]+dp[i-1][j];
            }
        }
        return dp[m-1][n-1];
    }
};

 

 

 1 class Solution {
 2     public int uniquePaths(int m, int n) {
 3         int[][] dp = new int[m][n];
 4         for(int i = 0;i<m;i++)
 5             dp[i][0] = 1;
 6         for(int i = 0;i<n;i++)
 7             dp[0][i] = 1;
 8         for(int i =1;i<m;i++)
 9             for (int j = 1;j < n;j++)
10                 dp[i][j] = dp[i-1][j] + dp[i][j-1];
11         return dp[m-1][n-1];
12     }
13 }

 

posted @ 2018-03-09 15:20  乐乐章  阅读(166)  评论(0编辑  收藏  举报