dp之多重背包hdu1059

题意:价值为1,2,3,4,5,6. 分别有n[1],n[2],n[3],n[4],n[5],n[6]个。求能否找到满足价值刚好是所有的一半的方案。

思路:简单的多重背包,我建议多重背包都用二进制拆分优化下........

 

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[200000],w[200000];
int main()
{
    int t[7],text=0;
    while(1)
    {
        int sum=0;
        for(int i=1;i<=6;i++)
        {
            scanf("%d",&t[i]);
            sum+=i*t[i];
        }
        if(sum==0)
        break;
        printf("Collection #%d:\n",++text);
        if(sum%2==1)
        {
            printf("Can't be divided.\n\n");
            continue;
        }
        sum/=2;
        int cnt=0;
        for(int i=1;i<=6;i++)
        {
            int k=1;
            while(t[i]-k>0)
            {
                w[cnt++]=k*i;
                t[i]-=k;
                k*=2;
            }
            w[cnt++]=t[i]*i;
        }
        memset(dp,0,sizeof(dp));
        for(int i=0;i<cnt;i++)
        {
            for(int j=sum;j>=w[i];j--)
            if(dp[j]<dp[j-w[i]]+w[i])
            dp[j]=dp[j-w[i]]+w[i];
        }
        if(dp[sum]==sum)
        printf("Can be divided.\n");
        else
        printf("Can't be divided.\n");
        printf("\n");
    }
    return 0;
} 

 

 

 

posted @ 2013-07-26 12:09  紫忆  阅读(492)  评论(0编辑  收藏  举报