搜索入门练习题7 最高效益和 题解

题目出处:《信息学奥赛一本通》例5.6

题目描述

设有A、B、C、D、E五人从事J1、J2、J3、J4、J5五项工作,每人只能从事一项,他们的效益如下所示。

  J1 J2 J3 J4 J5
A 13 11 10 4 7
B 13 10 10 8 5
C 5 9 7 7 4
D 15 12 10 11 5
E 10 11 8 8 4

每人选择五项工作中的一项,在各种选择的组合中,找到效益最高的一组输出。

题目分析

这道题目其实就是“全排列”问题的变形题,我们可以使用深度优先搜索枚举出所有排列,从而找出和最大的那个排列。
书上的算法分析:

  1. 用数组 \(f\) 储存搜索中工作选择的方案;数组 \(g\) 存放最优的工作选择方案;数组 \(p\) 用于表示某项工作有没有被选择。
  2. (1)选择 \(p(i) = 0\) 的第 \(i\) 项工作;
    (2)判断效益是否高于 \(maxv\) (这里的 \(maxv\) 用于记录最高的效益和),若高于则更新 \(g\) 数组及 \(maxv\) 的值。
  3. 搜索策略:回溯法(深度优先搜索dfs)。

然后我就用这种思想来实现这道题目,实现代码如下:

#include <bits/stdc++.h>
using namespace std;
int a[][5] = {  // 数组a用于反映任务效益
    13, 11, 10, 4, 7,
    13, 10, 10, 8, 5,
    5, 9, 7, 7, 4,
    15, 12, 10, 11, 5,
    10, 11, 8, 8, 4
};  // a[i][j]表示第i个人做第j项工作的效益
// f[i] 对应当前第i个人选择方案的编号
// g[i] 对应最高效益的第i个人选择方案的编号
// maxv 对应最高效益和
// tmp用于存储 f 对应的当前效益和
// p[i] 用于表示第i项工作是否已分配,
// p[i]为true说明第i项工作已经分配,为false说明第i项工作还没有分配
// 注意,这里人的编号以及人物的编号都从0开始
int f[5], g[5], maxv, tmp;
bool p[5];
// check函数用于判断f数组当前方案是否比g数组的方案更优
bool check() {
    tmp = 0;          //
    for (int i = 0; i < 5; i ++)    // 因为分配给第i个人的工作编号是p[i],
        tmp += a[i][ f[i] ];        // 所以tmp需要加上 a[i][ p[i] ]
    return tmp > maxv;
}
// update函数用于更新 g 和 maxv
void update() {
    maxv = tmp;
    for (int i = 0; i < 5; i ++) g[i] = f[i];
}
// dfs函数用于搜过第id个人对应的工作编号
void dfs(int id) {
    if (id == 5) { // 边界条件,说明5个人的工作都分配好了
        if (check()) update();
        return;
    }
    for (int i = 0; i < 5; i ++) {  // i用于遍历工作
        if (p[i] == false) {    // p[i]为false说明第i项工作还没有人做
            f[id] = i;      // 尝试让第id个人做第i项工作
            p[i] = true;    // 同时标记第i项工作已经有人做了
            dfs(id+1);        // 为第id+1个人分配工作
            p[i] = false;   // 回溯回来后我们要确保p[i]重新置为false
        }
    }
}
// output函数用于输出maxv和最高效益方案g
void output() {
    cout << maxv << endl;
    for (int i = 0; i <5; i ++)
        printf("%5d", g[i]+1);  // g[i]从0到4,g[i]+1从1到5
    cout << endl;
}
int main() {
    dfs(0);
    output();
    return 0;
}
posted @ 2019-09-03 00:51  zifeiynoip  阅读(589)  评论(0编辑  收藏  举报