2014-03-20 01:14
题目:有100栈灯,一开始都关着。如果你按照n从1~100的顺序,每次都掰一下n的倍数的开关(开->关,关->开),那么到最后有多少灯是亮的?
解法:这个题目要多想想再动手,因为想通了以后就基本不用动手了。对于编号为x的灯,每当i是x的约数时,在第i轮时第x号灯就被掰了一次。比如6的约数为{1,2,3,6},6号灯被掰了4次。那么,每个灯被掰的次数就是约数个数次。约数个数的公式你懂的,但是用不着去算。如果一盏灯是开的,那么它就被掰了奇数次,根据约数和公式,只有因数分解之后所有指数都是偶数的时候,约数个数才为奇数。比如36的约数{1,2,3,4,6,9,12,18,36}。只有完全平方数满足条件。还有另一种想法,如果一个数n不是完全平方数,那么n的约数一定可以分为个数相同的两拨儿,一拨儿大于平方根,一拨儿小于平方根,配对正好成绩等于n。只有完全平方数才会多出一个整数的平方根,导致约数个数为奇数。
代码:
1 // 6.6 Given n lights, every time you toggle the switches of k-multiples. k goes from 1 to n. 2 // Assume they're all off at first, how many of them are on at last. 3 #include <cstdio> 4 using namespace std; 5 6 // My solution: 7 // For a number m between 1~n, the key is total number of divisors of m, defined as num_div(m). 8 // The light m is toggled for num_div(m) times. If it is odd, light is on. Even and light is off. 9 // Only perfect square can be factorized, where every prime factor has even exponents. 10 // That is, m = p[0]^e[0] * p[1]^e[1] * ... * p[whatever]^e[whatever] 11 // num_div(m) = (e[0] + 1) * (e[1] + 1) * ... * (e[whatever] + 1) 12 // If num_div(m) is to be odd, every multiplier has to be odd, every e[i] has to be even. 13 // Thus m has to be a perfect square, if light m is on at last. 14 int main() 15 { 16 int n; 17 int i; 18 19 while (scanf("%d", &n) == 1 && n > 0) { 20 for (i = 1; i <= n / i; ++i) { 21 printf("%d ", i * i); 22 } 23 printf("\n"); 24 printf("%d light(s) is(are) on.\n", i - 1); 25 } 26 27 return 0; 28 }