Unique Paths II

2013.12.21 03:19

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

Solution1:

  This problem is a variation from "LeetCode - Unique Paths", only difference in that there're some grids defined as impenetrable obstacles.

  I haven't come up with a solution using combinatorics. So I just did it the old-school way, dynamic programming with recurrence relation as:

    a[x][y] = b[x][y] ? 0 : a[x - 1][y] + a[x][y - 1];

    where a[x][y] means the number of unique paths to (x, y), b[x][y] = 1 means (x, y) is an obstacle, while 0 for free space.

  Time complexity is O(m * n), space complexity is O(m * n).

Accepted code:

 1 // 1WA, 1AC
 2 class Solution {
 3 public:
 4     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 5         // IMPORTANT: Please reset any member data you declared, as
 6         // the same Solution instance will be reused for each test case.
 7         int m, n;
 8         
 9         m = obstacleGrid.size();
10         if(m <= 0){
11             return 0;
12         }
13         
14         n = obstacleGrid[0].size();
15         
16         int **arr = nullptr;
17         int i, j;
18         
19         arr = new int*[m];
20         for(i = 0; i < m; ++i){
21             arr[i] = new int[n];
22         }
23         
24         arr[0][0] = obstacleGrid[0][0] ? 0 : 1;
25         for(i = 1; i < m; ++i){
26             // 1WA here, arr[i][0] = obstacleGrid[i][0] ? 0 : obstacleGrid[i - 1][0];
27             // arr[i][0] = obstacleGrid[i][0] ? 0 : arr[i - 1][0];
28             arr[i][0] = obstacleGrid[i][0] ? 0 : arr[i - 1][0];
29         }
30         for(i = 1; i < n; ++i){
31             arr[0][i] = obstacleGrid[0][i] ? 0 : arr[0][i - 1];
32         }
33         for(i = 1; i < m; ++i){
34             for(j = 1; j < n; ++j){
35                 arr[i][j] = obstacleGrid[i][j] ? 0 : arr[i - 1][j] + arr[i][j - 1];
36             }
37         }
38         
39         int res = arr[m - 1][n - 1];
40         for(i = 0; i < m; ++i){
41             delete[] arr[i];
42         }
43         delete[] arr;
44         
45         return res;
46     }
47 };

Solution2:

  Space complexity can be optimized to linear, using 2 rows instead of m rows of extra space. 

  Time complexity is O(m * n), space complexity is O(n).

Accepted code:

 1 // 1AC, very nice
 2 class Solution {
 3 public:
 4     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 5         // IMPORTANT: Please reset any member data you declared, as
 6         // the same Solution instance will be reused for each test case.
 7         int m, n;
 8         
 9         m = obstacleGrid.size();
10         if(m <= 0){
11             return 0;
12         }
13         
14         n = obstacleGrid[0].size();
15         
16         int **arr = nullptr;
17         int i, j;
18         int flag = 0;
19         
20         arr = new int*[2];
21         for(i = 0; i < 2; ++i){
22             arr[i] = new int[n];
23         }
24         
25         flag = 0;
26         arr[flag][0] = obstacleGrid[0][0] ? 0 : 1;
27         for(i = 1; i < n; ++i){
28             arr[flag][i] = obstacleGrid[0][i] ? 0 : arr[flag][i - 1];
29         }
30         for(i = 1; i < m; ++i){
31             flag = !flag;
32             arr[flag][0] = obstacleGrid[i][0] ? 0 : arr[!flag][0];
33             for(j = 1; j < n; ++j){
34                 arr[flag][j] = obstacleGrid[i][j] ? 0 : arr[!flag][j] + arr[flag][j - 1];
35             }
36         }
37         
38         j = arr[flag][n - 1];
39         for(i = 0; i < 2; ++i){
40             delete[] arr[i];
41         }
42         delete[] arr;
43         
44         return j;
45     }
46 };

 

 posted on 2013-12-21 03:28  zhuli19901106  阅读(225)  评论(0编辑  收藏  举报