PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models
线性模型的一个关键属性是它是参数的一个线性函数,形式如下:
w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫basis function,记作φ(x),于是线性模型可以表示成:
w0看着难受,定义一个函数φ0(x) = 1, 模型的形式再一次简化成:
以上就是线性模型的一般形式。basis function有很多选择,例如Gaussian、sigmoid、tanh (tanh(x) = 2 * sigmoid(a) − 1)。
Maximum likelihood and least squares
训练线性模型的时候,假设cost function为sum-of-squares error function,那么minimize cost function 和 maximize likelihood function是等价的。
另外一个发现就是,w0最终解出来为target values的均值 和 各个特征的basis function values均值的加权和 的差,如下:
Regularized least squares
一般的正则化形式如下:
q = 1, 为lasso(least absolute shrinkage and selection operator) 正则化,其特点是,当λ足够大的时候,某些参数会趋向0,看下图。
q = 2, 二次正则化,使得一些参数足够小。
Bias-Variance trade-off
假设y(x, D)代表基于数据集D训练出来的regression function, h(x)代表数据集D中,给定x条件下target value的期望
squared loss function可以写成:
后一项与y(x)无关,考虑前一项积分里面的部分:
{y(x; D) − h(x)}2 = {y(x; D) − ED[y(x; D)] + ED[y(x; D)] − h(x)}2
= {y(x; D) − ED[y(x; D)]}2 + {ED[y(x; D)] − h(x)}2
+2{y(x; D) − ED[y(x; D)]}{ED[y(x; D)] − h(x)}
这样积分取期望后为:
前一项为bias,后一项为variance。
于是loss function的总体希望就为,(bias)2 + variance + noise
于是就产生了bias-variance trade-off问题, flexible models低bias,高variance;rigid models 高bias,低variance。
在实际应用中,为了观察bias和variance,计算如下:
其中:
y(l)(x)是prediction function。
Bayesian Linear Regression(该段摘自Jian Xiao(iamxiaojian@gmail.com)的笔记Notes on Pattern Recognition and Machine Learning (Bishop))
Bayesian 方法能够避免 over-fitting 的原因是: Marginalizing over the model parameters instead of making point estimates of their values.
假设有多个 model;观察到的 data set 是 D。 Bayesian 的 model comparison 方法是,比较各个模型的后验概率,即:
先验概率 p(Mi) allows us to express a preference for different model。可以假设每个模型的先验概率相等,那么剩下要比较的关键是: p(D|Mi) ——model evidence 或 marginal likelihood。
Model averaging V.S. model selection
Model averaging:把多个模型,用各自模型的后验概率加权平均,得到 predictive distribution为
Model selection: 只选择一个模型,即其中后验概率最大的模型。这是一种 approximation to model averaging。以上分析可以看出,各个 model 的后验概率是关键,而计算后验概率的关键又是 model evidence。
从 sampling 的角度看, Mi 相当于 hyper-parameter,而 w 则是 parameter。 一个 model 不同于另一个 model,是因为 hyper-parameter。
The Evidence Approximation
full Bayesian需要marginalize with respect to hyper-parameters as well as parameters,例如hyperparameter是alpha和beta,w是parameter,那么predictive distribution为:
就比较难,这里就考虑一种approximation,给hyperparameters设置一个特定的数值,这个数值由maximizing the marginal likelihood function 来确定。这个方法叫empirical Bayes、 type 2 maximum likelihood、generalized maximum likelihood、evidence approximation(in machine learning)
Previous Chapter | Next Chapter