KM算法(转)
KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[i],顶点Yi的顶标为B [i],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终 成立。KM算法的正确性基于以下定理:
若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。
初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。
以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶 标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数 slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A [i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改 顶标后,要把所有的slack值都减去d。
#include <memory.h>
#include <algorithm> // 使用其中的 min 函数
using namespace std;
const int MAX = 1024;
int n; // X 的大小
int weight [MAX] [MAX]; // X 到 Y 的映射(权重)
int lx [MAX], ly [MAX]; // 标号
bool sx [MAX], sy [MAX]; // 是否被搜索过
int match [MAX]; // Y(i) 与 X(match [i]) 匹配
// 初始化权重
void init (int size);
// 从 X(u) 寻找增广道路,找到则返回 true
bool path (int u);
// 参数 maxsum 为 true ,返回最大权匹配,否则最小权匹配
int bestmatch (bool maxsum = true);
void init (int size)
{
// 根据实际情况,添加代码以初始化
n = size;
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
scanf ("%d", &weight [i] [j]);
}
bool path (int u)
{
sx [u] = true;
for (int v = 0; v < n; v ++)
if (!sy [v] && lx[u] + ly [v] == weight [u] [v])
{
sy [v] = true;
if (match [v] == -1 || path (match [v]))
{
match [v] = u;
return true;
}
}
return false;
}
int bestmatch (bool maxsum)
{
int i, j;
if (!maxsum)
{
for (i = 0; i < n; i ++)
for (j = 0; j < n; j ++)
weight [i] [j] = -weight [i] [j];
}
// 初始化标号
for (i = 0; i < n; i ++)
{
lx [i] = -0x1FFFFFFF;
ly [i] = 0;
for (j = 0; j < n; j ++)
if (lx [i] < weight [i] [j])
lx [i] = weight [i] [j];
}
memset (match, -1, sizeof (match));
for (int u = 0; u < n; u ++)
while (1)
{
memset (sx, 0, sizeof (sx));
memset (sy, 0, sizeof (sy));
if (path (u))
break;
// 修改标号
int dx = 0x7FFFFFFF;
for (i = 0; i < n; i ++)
if (sx [i])
for (j = 0; j < n; j ++)
if(!sy [j])
dx = min (lx[i] + ly [j] - weight [i] [j], dx);
for (i = 0; i < n; i ++)
{
if (sx [i])
lx [i] -= dx;
if (sy [i])
ly [i] += dx;
}
}
int sum = 0;
for (i = 0; i < n; i ++)
sum += weight [match [i]] [i];
if (!maxsum)
{
sum = -sum;
for (i = 0; i < n; i ++)
for (j = 0; j < n; j ++)
weight [i] [j] = -weight [i] [j]; // 如果需要保持 weight [ ] [ ] 原来的值,这里需要将其还原
}
return sum;
}
int main()
{
int n;
scanf ("%d", &n);
init (n);
int cost = bestmatch (true);
printf ("%d ", cost);
for (int i = 0; i < n; i ++)
{
printf ("Y %d -> X %d ", i, match [i]);
}
return 0;
}
/*
5
3 4 6 4 9
6 4 5 3 8
7 5 3 4 2
6 3 2 2 5
8 4 5 4 7
//执行bestmatch (true) ,结果为 29
*/
/*
5
7 6 4 6 1
4 6 5 7 2
3 5 7 6 8
4 7 8 8 5
2 6 5 6 3
//执行 bestmatch (false) ,结果为 21
*/