POJ-3177 Redundant Paths 双连通分量

  题目链接:http://poj.org/problem?id=3177

  本题要求的就是最少添加多少条边可变无桥的连通图,POJ1236差不多,(度为1的边双连通分量的个数+1)/2。

  1 //STATUS:C++_AC_47MS_12568KB
  2 #include <functional>
  3 #include <algorithm>
  4 #include <iostream>
  5 //#include <ext/rope>
  6 #include <fstream>
  7 #include <sstream>
  8 #include <iomanip>
  9 #include <numeric>
 10 #include <cstring>
 11 #include <cassert>
 12 #include <cstdio>
 13 #include <string>
 14 #include <vector>
 15 #include <bitset>
 16 #include <queue>
 17 #include <stack>
 18 #include <cmath>
 19 #include <ctime>
 20 #include <list>
 21 #include <set>
 22 #include <map>
 23 using namespace std;
 24 //define
 25 #define pii pair<int,int>
 26 #define mem(a,b) memset(a,b,sizeof(a))
 27 #define lson l,mid,rt<<1
 28 #define rson mid+1,r,rt<<1|1
 29 #define PI acos(-1.0)
 30 //typedef
 31 typedef __int64 LL;
 32 typedef unsigned __int64 ULL;
 33 //const
 34 const int N=5010;
 35 const int INF=0x3f3f3f3f;
 36 const int MOD=100000,STA=8000010;
 37 const LL LNF=1LL<<60;
 38 const double EPS=1e-8;
 39 const double OO=1e15;
 40 const int dx[4]={-1,0,1,0};
 41 const int dy[4]={0,1,0,-1};
 42 //Daily Use ...
 43 inline int sign(double x){return (x>EPS)-(x<-EPS);}
 44 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
 45 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
 46 template<class T> inline T Min(T a,T b){return a<b?a:b;}
 47 template<class T> inline T Max(T a,T b){return a>b?a:b;}
 48 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
 49 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
 50 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
 51 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
 52 //End
 53 
 54 struct Edge{
 55     int u,v;
 56 }e[N*4];
 57 //bool iscut[N];
 58 bool vis[N*N/2];
 59 int first[N],next[N*4],pre[N],low[N],bccno[N],cnt[N];
 60 int n,m,mt,bcnt,dfs_clock;
 61 stack<int> s;
 62 
 63 void adde(int a,int b)
 64 {
 65     e[mt].u=a;e[mt].v=b;
 66     next[mt]=first[a];first[a]=mt++;
 67     e[mt].u=b;e[mt].v=a;
 68     next[mt]=first[b];first[b]=mt++;
 69 }
 70 
 71 void dfs(int u,int fa)
 72 {
 73     int i,v;
 74     pre[u]=low[u]=++dfs_clock;
 75     s.push(u);
 76     for(i=first[u];i!=-1;i=next[i]){
 77         v=e[i].v;
 78         if(!pre[v]){
 79             dfs(v,u);
 80             low[u]=Min(low[u],low[v]);
 81         }
 82         else if(v!=fa && pre[v]<pre[u]){
 83             low[u]=Min(low[u],pre[v]);
 84         }
 85     }
 86     if(low[u]==pre[u]){
 87         int x=-1;
 88         bcnt++;
 89         while(x!=u){
 90             x=s.top();s.pop();
 91             bccno[x]=bcnt;
 92         }
 93     }
 94 }
 95 
 96 void find_bcc()
 97 {
 98     int i;
 99     bcnt=dfs_clock=0;//mem(iscut,0);
100     mem(pre,0);mem(bccno,0);
101     for(i=1;i<=n;i++){
102         if(!pre[i])dfs(i,-1);
103     }
104 }
105 
106 int main()
107 {
108  //   freopen("in.txt","r",stdin);
109     int i,j,a,b,ans,t;
110     while(~scanf("%d%d",&n,&m))
111     {
112         mt=0;
113         mem(first,-1);
114         mem(vis,0);
115         while(m--){
116             scanf("%d%d",&a,&b);
117             if(a<b)swap(a,b);
118             t=a*(a-1)/2+b;
119             if(!vis[t]){
120                 vis[t]=true;
121                 adde(a,b);
122             }
123         }
124 
125         find_bcc();
126         ans=0;
127         if(bcnt>1){
128             mem(cnt,0);
129             for(i=0;i<mt;i+=2){
130                 if(bccno[e[i].u]!=bccno[e[i].v]){
131                     cnt[bccno[e[i].u]]++;
132                     cnt[bccno[e[i].v]]++;
133                 }
134             }
135             for(i=1;i<=bcnt;i++){
136                 if(cnt[i]<=1)ans++;
137             }
138         }
139 
140         printf("%d\n",(ans+1)/2);
141     }
142     return 0;
143 }

 

posted @ 2013-05-21 11:46  zhsl  阅读(174)  评论(0编辑  收藏  举报