最短路径—Dijkstra算法和Floyd算法

原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

最后边附有我根据文中Dijkstra算法的描述使用java写的算法实现。

 

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

 

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

 

执行动画过程如下图

 

3.算法代码实现:

 

复制代码
const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];

int A[MAXUNM][MAXNUM];

void Dijkstra(int v0)
{
    bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
      int n=MAXNUM;
    for(int i=1; i<=n; ++i)
    {
        dist[i] = A[v0][i];
        S[i] = false;                                // 初始都未用过该点
        if(dist[i] == MAXINT)    
              prev[i] = -1;
        else 
              prev[i] = v0;
     }
     dist[v0] = 0;
     S[v0] = true;   
    for(int i=2; i<=n; i++)
    {
         int mindist = MAXINT;
         int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dist[j]<mindist)
            {
                  u = j;                             // u保存当前邻接点中距离最小的点的号码 
                  mindist = dist[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<MAXINT)
             {
                 if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                 {
                     dist[j] = dist[u] + A[u][j];    //更新dist 
                     prev[j] = u;                    //记录前驱顶点 
                  }
              }
     }
}
复制代码

 

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

 

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

 

3.算法代码实现

复制代码
typedef struct          
{        
    char vertex[VertexNum];                                //顶点表         
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
    int n,e;                                               //图中当前的顶点数和边数         
}MGraph; 

void Floyd(MGraph g) {   int A[MAXV][MAXV];   int path[MAXV][MAXV];   int i,j,k,n=g.n;   for(i=0;i<n;i++)   for(j=0;j<n;j++)   {    A[i][j]=g.edges[i][j];    path[i][j]=-1;   }   for(k=0;k<n;k++)   {   for(i=0;i<n;i++)   for(j=0;j<n;j++)   if(A[i][j]>(A[i][k]+A[k][j]))   {
  A[i][j]=A[i][k]+A[k][j];   path[i][j]=k;   }  }
}
复制代码

算法时间复杂度:O(n3)

 

前面是原文使用C语言的实现,我根据描述使用java实现了Dijkstra算法,已测试正确:

package test2;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class RouteCaculateTest {

    public static void main(String[] args) {
        Set<Point> set = new HashSet<Point>();
        Point[] points = new Point[6];
        Route[] routs = new Route[9];
        init(points, routs);
        
        Point start = points[0];    //最短路径起始点
        
        start.sPoints = new Point[]{start};
        start.sLens = new int[]{0};
        deal(start, routs, set);
        
        System.out.println(points[3]);    //计算结束后,每一个节点中的points就是该节点到起始点的最短路径
        String deepToString = Arrays.deepToString(points);
        System.out.println(deepToString);
    }
    //回调遍历处理每一个节点
    private static void deal(Point curr, Route[] routs, Set<Point> set) {
        set.add(curr);
        List<Point> list = new ArrayList<Point>();
        for(Route rout : routs){
            if(rout.p1 == curr && !set.contains(rout.p2)){
                rout.p2.caculate(curr, rout.length);
                list.add(rout.p2);
            }else if(rout.p2 == curr && !set.contains(rout.p1)){
                rout.p1.caculate(curr, rout.length);
                list.add(rout.p1);
            }
        }
        for(Point p : list){
            deal(p, routs, set);
        }
    }
    //构建节点和路径
    static void init(Point[] points, Route[] routs){
        for(int i = 0; i < 6; i++){
            points[i] = new Point(i + 1);
        }
        routs[0] = new Route(points[0], points[1], 7);
        routs[1] = new Route(points[0], points[2], 9);
        routs[2] = new Route(points[0], points[5], 14);
        routs[3] = new Route(points[1], points[2], 10);
        routs[4] = new Route(points[1], points[3], 15);
        routs[5] = new Route(points[2], points[5], 2);
        routs[6] = new Route(points[2], points[3], 11);
        routs[7] = new Route(points[3], points[4], 6);
        routs[8] = new Route(points[4], points[5], 9);
    }
    
}

class Route{
    
    Point p1;
    Point p2;
    int length;
    
    public Route(Point p1, Point p2, int length){
        this.p1 = p1;
        this.p2 = p2;
        this.length = length;
    }
    
}

class Point{
    
    Point[] sPoints = null;
    int[] sLens = null;
    
    public Point(int index){
        this.index = index;
    }
    
    public void caculate(Point lastP, int length) {
        int old = Integer.MAX_VALUE;
        if(sLens != null){
            old = 0;
            for(int len : sLens){
                old += len;
            }
        }
        int nLen = 0;
        for(int len : lastP.sLens){
            nLen += len;
        }
        nLen += length;
        if(nLen < old){    
            this.sPoints = new Point[lastP.sPoints.length + 1];
            System.arraycopy(lastP.sPoints, 0, this.sPoints, 0, lastP.sPoints.length);
            this.sPoints[this.sPoints.length - 1] = this;
            
            this.sLens = new int[lastP.sLens.length + 1];
            System.arraycopy(lastP.sLens, 0, this.sLens, 0, lastP.sLens.length);
            this.sLens[this.sLens.length - 1] = length;
        }
    }

    private int index = -1;
    
    @Override
    public String toString() {
        String pointIndexs = "[";
        for(Point p : sPoints){
            pointIndexs += p.index + ",";
        }
        pointIndexs = pointIndexs.substring(0, pointIndexs.length() - 1);
        pointIndexs += "]";
        int tt = 0;
        for(int len : sLens){
            tt += len;
        }
        String lenText = Arrays.toString(sLens) + "(total:" + tt + ")";
        return "index:" + index + "; path:" + pointIndexs + "; length:" + lenText;
    }
    
}

 

 

 

posted @ 2016-11-07 17:06  ZSQ的博客  阅读(862)  评论(0编辑  收藏  举报