poj2151之概率DP
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 4403 | Accepted: 1941 |
Description
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
Output
Sample Input
2 2 2 0.9 0.9 1 0.9 0 0 0
Sample Output
0.972
/*题意: ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 每队至少解出一题且冠军队至少解出N道题的概率。分析: 对于须要求得概率比較easy想到: 如果p1为每一个队至少解出一题的概率,这个easy算出。 如果p2为每一个队至少解出一题可是不超过n-1题的概率 所以终于答案为:p1-p2 如今问题是怎样求出p2?
如果dp[i][j]表示第i个队解出的题目<=j的概率 则dp[i][j]=解出1题+解出2题+...解出j题的概率 如今问题转化为怎样求解出1。2,3...k题的概率 如果x[i][j][k]表示第i个队在前j题解出k题的概率 则: x[i][j][k]=x[i][j-1][k-1]*p[i][j]+x[i][j-1][k]*(1-p[i][j]); 所以x[i][M][k]表示的就是第i个队解出k题的概率 */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=1000+10; const int N=30+10; int m,t,n,index; double x[2][N],dp,p[MAX][N]; int main(){ while(cin>>m>>t>>n,m+t+n){ double p1=1,p2=1,temp=1; for(int i=1;i<=t;++i){ temp=1; for(int j=1;j<=m;++j){cin>>p[i][j];temp=temp*(1-p[i][j]);} p1=p1*(1-temp);//1-temp表示至少解出一道题 } for(int i=1;i<=t;++i){ index=0; memset(x,0,sizeof x);//初始化前0个解出1~m为0 x[0][0]=1;//前0个解出0个为1 for(int j=1;j<=m;++j){ index=index^1; for(int k=1;k<=m;++k){ x[index][k]=p[i][j]*x[index^1][k-1]+(1-p[i][j])*x[index^1][k]; } x[index][0]=x[index^1][0]*(1-p[i][j]);//表示前j道题做出0题的概率 } dp=0;//dp表示第i队解出题目为1~n-1的概率 for(int j=1;j<=n-1;++j)dp+=x[index][j]; p2=p2*dp;//p2表示解出1~n-1题的概率 } printf("%.3f\n",p1-p2); } return 0; }