Python3 元组

Python 的元组与列表类似,不同之处在于元组的元素不能修改。

元组使用小括号,列表使用方括号。

元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。

不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。

定义:与列表类似,只不过[]改成()
特性:
1.可存放多个值
2.不可变
3.
按照从左到右的顺序定义元组元素,下标从0开始顺序访问,有序
基本操作:
  • 索引
  • 切片
  • 循环
  • 长度
  • 包含

 

lass tuple(object):
    """
    tuple() -> empty tuple
    tuple(iterable) -> tuple initialized from iterable's items
    
    If the argument is a tuple, the return value is the same object.
    """
    def count(self, value): # real signature unknown; restored from __doc__
        """ T.count(value) -> integer -- return number of occurrences of value """
        return 0

    def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
        """
        T.index(value, [start, [stop]]) -> integer -- return first index of value.
        Raises ValueError if the value is not present.
        """
        return 0

    def __add__(self, y): # real signature unknown; restored from __doc__
        """ x.__add__(y) <==> x+y """
        pass

    def __contains__(self, y): # real signature unknown; restored from __doc__
        """ x.__contains__(y) <==> y in x """
        pass

    def __eq__(self, y): # real signature unknown; restored from __doc__
        """ x.__eq__(y) <==> x==y """
        pass

    def __getattribute__(self, name): # real signature unknown; restored from __doc__
        """ x.__getattribute__('name') <==> x.name """
        pass

    def __getitem__(self, y): # real signature unknown; restored from __doc__
        """ x.__getitem__(y) <==> x[y] """
        pass

    def __getnewargs__(self, *args, **kwargs): # real signature unknown
        pass

    def __getslice__(self, i, j): # real signature unknown; restored from __doc__
        """
        x.__getslice__(i, j) <==> x[i:j]
                   
                   Use of negative indices is not supported.
        """
        pass

    def __ge__(self, y): # real signature unknown; restored from __doc__
        """ x.__ge__(y) <==> x>=y """
        pass

    def __gt__(self, y): # real signature unknown; restored from __doc__
        """ x.__gt__(y) <==> x>y """
        pass

    def __hash__(self): # real signature unknown; restored from __doc__
        """ x.__hash__() <==> hash(x) """
        pass

    def __init__(self, seq=()): # known special case of tuple.__init__
        """
        tuple() -> empty tuple
        tuple(iterable) -> tuple initialized from iterable's items
        
        If the argument is a tuple, the return value is the same object.
        # (copied from class doc)
        """
        pass

    def __iter__(self): # real signature unknown; restored from __doc__
        """ x.__iter__() <==> iter(x) """
        pass

    def __len__(self): # real signature unknown; restored from __doc__
        """ x.__len__() <==> len(x) """
        pass

    def __le__(self, y): # real signature unknown; restored from __doc__
        """ x.__le__(y) <==> x<=y """
        pass

    def __lt__(self, y): # real signature unknown; restored from __doc__
        """ x.__lt__(y) <==> x<y """
        pass

    def __mul__(self, n): # real signature unknown; restored from __doc__
        """ x.__mul__(n) <==> x*n """
        pass

    @staticmethod # known case of __new__
    def __new__(S, *more): # real signature unknown; restored from __doc__
        """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
        pass

    def __ne__(self, y): # real signature unknown; restored from __doc__
        """ x.__ne__(y) <==> x!=y """
        pass

    def __repr__(self): # real signature unknown; restored from __doc__
        """ x.__repr__() <==> repr(x) """
        pass

    def __rmul__(self, n): # real signature unknown; restored from __doc__
        """ x.__rmul__(n) <==> n*x """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ T.__sizeof__() -- size of T in memory, in bytes """
        pass

tuple

 

如下实例:

tup1 = ('Google', 'Runoob', 1997, 2000);
tup2 = (1, 2, 3, 4, 5 );
tup3 = "a", "b", "c", "d";

 创建空元组

tup1 = ();

 元组中只包含一个元素时,需要在元素后面添加逗号

tup1 = (50,);

 

元组与字符串类似,下标索引从0开始,可以进行截取,组合等。


访问元组

元组可以使用下标索引来访问元组中的值,如下实例:

#!/usr/bin/python3

tup1 = ('Google', 'Baidu', 1997, 2000)
tup2 = (1, 2, 3, 4, 5, 6, 7 )

print ("tup1[0]: ", tup1[0])
print ("tup2[1:5]: ", tup2[1:5])

 以上实例输出结果:

tup1[0]:  Google
tup2[1:5]:  (2, 3, 4, 5)

 

修改元组

元组中的元素值是不允许修改的,但我们可以对元组进行连接组合,如下实例:

#!/usr/bin/python3

tup1 = (12, 34.56);
tup2 = ('abc', 'xyz')

# 以下修改元组元素操作是非法的。
# tup1[0] = 100

# 创建一个新的元组
tup3 = tup1 + tup2;
print (tup3)

 以上实例输出结果:

(12, 34.56, 'abc', 'xyz')

 

删除元组

元组中的元素值是不允许删除的,但我们可以使用del语句来删除整个元组,如下实例:

#!/usr/bin/python3

tup = ('Google', 'Baidu', 1997, 2000)

print (tup)
del tup;
print ("删除后的元组 tup : ")
print (tup)

 以上实例元组被删除后,输出变量会有异常信息,输出如下所示:

删除后的元组 tup : 
Traceback (most recent call last):
  File "test.py", line 8, in <module>
    print (tup)
NameError: name 'tup' is not defined

 

元组运算符

与字符串一样,元组之间可以使用 + 号和 * 号进行运算。这就意味着他们可以组合和复制,运算后会生成一个新的元组。

Python 表达式结果描述
len((1, 2, 3)) 3 计算元素个数
(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) 连接
['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] 复制
3 in (1, 2, 3) True 元素是否存在
for x in (1, 2, 3): print x, 1 2 3 迭代

元组索引,截取

因为元组也是一个序列,所以我们可以访问元组中的指定位置的元素,也可以截取索引中的一段元素,如下所示:

元组:

L = ('Google', 'Taobao', 'Baidu')

 Python 表达式

 结果描述
L[2] 'Baidu' 读取第三个元素
L[-2] 'Taobao' 反向读取;读取倒数第二个元素
L[1:] ('Taobao', 'Baidu') 截取元素,从第二个开始后的所有元素。

运行实例如下:

>>> L = ('Google', 'Taobao', 'Baidu')
>>> L[2]
'Baidu'
>>> L[-2]
'Taobao'
>>> L[1:]
('Taobao', 'Baidu')

 

元组内置函数

Python元组包含了以下内置函数

序号方法及描述实例
1 len(tuple)
计算元组元素个数。
>>> tuple1 = ('Google', 'QQ', 'Taobao')
>>> len(tuple1)
3
>>>
2 max(tuple)
返回元组中元素最大值。
>>> tuple2 = ('5', '4', '8')
>>> max(tuple2)
'8'
>>>
3 min(tuple)
返回元组中元素最小值。
>>> tuple2 = ('5', '4', '8')
>>> min(tuple2)
'4'
>>>
4 tuple(seq)
将列表转换为元组。
>>> list1= ['Google', 'Taobao', 'QQ', 'Baidu']
>>> tuple1=tuple(list1)
>>> tuple1
('Google', 'Taobao', 'QQ', 'Baidu')

 

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

最后来看一个“可变的”tuple:

>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

 

这个tuple定义的时候有3个元素,分别是'a''b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?

别急,我们先看看定义的时候tuple包含的3个元素:

tuple-0

当我们把list的元素'A''B'修改为'X''Y'后,tuple变为:

tuple-1

表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!

理解了“指向不变”后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。

 

 

Python3 字典

字典是另一种可变容器模型,且可存储任意类型对象。

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

常用操作:

  • 索引
  • 新增
  • 删除
  • 键、值、键值对
  • 循环
  • 长度
class dict(object):
    """
    dict() -> new empty dictionary
    dict(mapping) -> new dictionary initialized from a mapping object's
        (key, value) pairs
    dict(iterable) -> new dictionary initialized as if via:
        d = {}
        for k, v in iterable:
            d[k] = v
    dict(**kwargs) -> new dictionary initialized with the name=value pairs
        in the keyword argument list.  For example:  dict(one=1, two=2)
    """

    def clear(self): # real signature unknown; restored from __doc__
        """ 清除内容 """
        """ D.clear() -> None.  Remove all items from D. """
        pass

    def copy(self): # real signature unknown; restored from __doc__
        """ 浅拷贝 """
        """ D.copy() -> a shallow copy of D """
        pass

    @staticmethod # known case
    def fromkeys(S, v=None): # real signature unknown; restored from __doc__
        """
        dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
        v defaults to None.
        """
        pass

    def get(self, k, d=None): # real signature unknown; restored from __doc__
        """ 根据key获取值,d是默认值 """
        """ D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None. """
        pass

    def has_key(self, k): # real signature unknown; restored from __doc__
        """ 是否有key """
        """ D.has_key(k) -> True if D has a key k, else False """
        return False

    def items(self): # real signature unknown; restored from __doc__
        """ 所有项的列表形式 """
        """ D.items() -> list of D's (key, value) pairs, as 2-tuples """
        return []

    def iteritems(self): # real signature unknown; restored from __doc__
        """ 项可迭代 """
        """ D.iteritems() -> an iterator over the (key, value) items of D """
        pass

    def iterkeys(self): # real signature unknown; restored from __doc__
        """ key可迭代 """
        """ D.iterkeys() -> an iterator over the keys of D """
        pass

    def itervalues(self): # real signature unknown; restored from __doc__
        """ value可迭代 """
        """ D.itervalues() -> an iterator over the values of D """
        pass

    def keys(self): # real signature unknown; restored from __doc__
        """ 所有的key列表 """
        """ D.keys() -> list of D's keys """
        return []

    def pop(self, k, d=None): # real signature unknown; restored from __doc__
        """ 获取并在字典中移除 """
        """
        D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
        If key is not found, d is returned if given, otherwise KeyError is raised
        """
        pass

    def popitem(self): # real signature unknown; restored from __doc__
        """ 获取并在字典中移除 """
        """
        D.popitem() -> (k, v), remove and return some (key, value) pair as a
        2-tuple; but raise KeyError if D is empty.
        """
        pass

    def setdefault(self, k, d=None): # real signature unknown; restored from __doc__
        """ 如果key不存在,则创建,如果存在,则返回已存在的值且不修改 """
        """ D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """
        pass

    def update(self, E=None, **F): # known special case of dict.update
        """ 更新
            {'name':'alex', 'age': 18000}
            [('name','sbsbsb'),]
        """
        """
        D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
        If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
        If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
        In either case, this is followed by: for k in F: D[k] = F[k]
        """
        pass

    def values(self): # real signature unknown; restored from __doc__
        """ 所有的值 """
        """ D.values() -> list of D's values """
        return []

    def viewitems(self): # real signature unknown; restored from __doc__
        """ 所有项,只是将内容保存至view对象中 """
        """ D.viewitems() -> a set-like object providing a view on D's items """
        pass

    def viewkeys(self): # real signature unknown; restored from __doc__
        """ D.viewkeys() -> a set-like object providing a view on D's keys """
        pass

    def viewvalues(self): # real signature unknown; restored from __doc__
        """ D.viewvalues() -> an object providing a view on D's values """
        pass

    def __cmp__(self, y): # real signature unknown; restored from __doc__
        """ x.__cmp__(y) <==> cmp(x,y) """
        pass

    def __contains__(self, k): # real signature unknown; restored from __doc__
        """ D.__contains__(k) -> True if D has a key k, else False """
        return False

    def __delitem__(self, y): # real signature unknown; restored from __doc__
        """ x.__delitem__(y) <==> del x[y] """
        pass

    def __eq__(self, y): # real signature unknown; restored from __doc__
        """ x.__eq__(y) <==> x==y """
        pass

    def __getattribute__(self, name): # real signature unknown; restored from __doc__
        """ x.__getattribute__('name') <==> x.name """
        pass

    def __getitem__(self, y): # real signature unknown; restored from __doc__
        """ x.__getitem__(y) <==> x[y] """
        pass

    def __ge__(self, y): # real signature unknown; restored from __doc__
        """ x.__ge__(y) <==> x>=y """
        pass

    def __gt__(self, y): # real signature unknown; restored from __doc__
        """ x.__gt__(y) <==> x>y """
        pass

    def __init__(self, seq=None, **kwargs): # known special case of dict.__init__
        """
        dict() -> new empty dictionary
        dict(mapping) -> new dictionary initialized from a mapping object's
            (key, value) pairs
        dict(iterable) -> new dictionary initialized as if via:
            d = {}
            for k, v in iterable:
                d[k] = v
        dict(**kwargs) -> new dictionary initialized with the name=value pairs
            in the keyword argument list.  For example:  dict(one=1, two=2)
        # (copied from class doc)
        """
        pass

    def __iter__(self): # real signature unknown; restored from __doc__
        """ x.__iter__() <==> iter(x) """
        pass

    def __len__(self): # real signature unknown; restored from __doc__
        """ x.__len__() <==> len(x) """
        pass

    def __le__(self, y): # real signature unknown; restored from __doc__
        """ x.__le__(y) <==> x<=y """
        pass

    def __lt__(self, y): # real signature unknown; restored from __doc__
        """ x.__lt__(y) <==> x<y """
        pass

    @staticmethod # known case of __new__
    def __new__(S, *more): # real signature unknown; restored from __doc__
        """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
        pass

    def __ne__(self, y): # real signature unknown; restored from __doc__
        """ x.__ne__(y) <==> x!=y """
        pass

    def __repr__(self): # real signature unknown; restored from __doc__
        """ x.__repr__() <==> repr(x) """
        pass

    def __setitem__(self, i, y): # real signature unknown; restored from __doc__
        """ x.__setitem__(i, y) <==> x[i]=y """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ D.__sizeof__() -> size of D in memory, in bytes """
        pass

    __hash__ = None

dict

 

定义:{key1:value1,key2:value2},key-value结构,key必须可hash
特性:
1.可存放多个值
2.可修改指定key对应的值,可变
3.无

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

 

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

 

如果key不存在,dict就会报错:

>>> d['Thomas']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

 要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

>>> 'Thomas' in d
False

 二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

 

注意:返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

 

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而变慢;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

 

字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中 ,格式如下所示:

d = {key1 : value1, key2 : value2 }

 

键必须是唯一的,但值则不必

值可以取任何数据类型,但键必须是不可变的,如字符串,数字或元组。

一个简单的字典实例:

dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

 也可如此创建字典:

dict1 = { 'abc': 456 };
dict2 = { 'abc': 123, 98.6: 37 };

 

访问字典里的值

把相应的键放入熟悉的方括弧,如下实例:

#!/usr/bin/python3

dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}

print ("dict['Name']: ", dict['Name'])
print ("dict['Age']: ", dict['Age'])

 以上实例输出结果:

dict['Name']:  Tom
dict['Age']:  7

 如果用字典里没有的键访问数据,会输出错误如下:

#!/usr/bin/python3
 
dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'};
 
print ("dict['Alice']: ", dict['Alice'])

 以上实例输出结果:

Traceback (most recent call last):
  File "test.py", line 5, in <module>
    print ("dict['Alice']: ", dict['Alice'])
KeyError: 'Alice'

 

修改字典

向字典添加新内容的方法是增加新的键/值对,修改或删除已有键/值对如下实例:

#!/usr/bin/python3

dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8;               # 更新 Age
dict['School'] = "python教程"  # 添加信息


print ("dict['Age']: ", dict['Age'])
print ("dict['School']: ", dict['School'])

 以上实例输出结果:

dict['Age']:  8
dict['School']:  python教程

 

删除字典元素

能删单一的元素也能清空字典,清空只需一项操作。

显示删除一个字典用del命令,如下实例:

#!/usr/bin/python3

dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}

del dict['Name'] # 删除键 'Name'
dict.clear()     # 删除字典
del dict         # 删除字典

print ("dict['Age']: ", dict['Age'])
print ("dict['School']: ", dict['School'])

 但这会引发一个异常,因为用执行 del 操作后字典不再存在:

Traceback (most recent call last):
  File "test.py", line 9, in <module>
    print ("dict['Age']: ", dict['Age'])
TypeError: 'type' object is not subscriptable

 

注:del() 方法后面也会讨论。

 

字典键的特性

字典值可以没有限制地取任何python对象,既可以是标准的对象,也可以是用户定义的,但键不行。

两个重要的点需要记住:

 

1)不允许同一个键出现两次。创建时如果同一个键被赋值两次,后一个值会被记住,如下实例:

#!/usr/bin/python3

dict = {'Name': 'Tom', 'Age': 7, 'Name': '小菜鸟'}

print ("dict['Name']: ", dict['Name'])

 以上实例输出结果:

dict['Name']:  小菜鸟

 2)键必须不可变,所以可以用数字,字符串或元组充当,而用列表就不行,如下实例:

#!/usr/bin/python3

dict = {['Name']: 'Tom', 'Age': 7}

print ("dict['Name']: ", dict['Name'])

 以上实例输出结果:

Traceback (most recent call last):
  File "test.py", line 3, in <module>
    dict = {['Name']: 'Runoob', 'Age': 7}
TypeError: unhashable type: 'list'

 


字典内置函数&方法

Python字典包含了以下内置函数:

序号函数及描述实例
1 len(dict)
计算字典元素个数,即键的总数。
>>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
>>> len(dict)
3
2 str(dict)
输出字典以可打印的字符串表示。
>>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
>>> str(dict)
"{'Name': 'Runoob', 'Class': 'First', 'Age': 7}"
3 type(variable)
返回输入的变量类型,如果变量是字典就返回字典类型。
>>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
>>> type(dict)
<class 'dict'>

Python字典包含了以下内置方法:

 

序号函数及描述
1 radiansdict.clear()
删除字典内所有元素
2 radiansdict.copy()
返回一个字典的浅复制
3 radiansdict.fromkeys()
创建一个新字典,以序列seq中元素做字典的键,val为字典所有键对应的初始值
4 radiansdict.get(key, default=None)
返回指定键的值,如果值不在字典中返回default值
5 key in dict
如果键在字典dict里返回true,否则返回false
6 radiansdict.items()
以列表返回可遍历的(键, 值) 元组数组
7 radiansdict.keys()
以列表返回一个字典所有的键
8 radiansdict.setdefault(key, default=None)
和get()类似, 但如果键不存在于字典中,将会添加键并将值设为default
9 radiansdict.update(dict2)
把字典dict2的键/值对更新到dict里
10 radiansdict.values()
以列表返回字典中的所有值

 

其他

1、for循环
用户按照顺序循环可迭代对象中的内容,
PS:break、continue
li = [11,22,33,44]
for item in li:
    print(item)
2、enumrate
为可迭代的对象添加序号
li = [11,22,33]
for k,v in enumerate(li, 1):
    print(k,v)
3、range和xrange
指定范围,生成指定的数字
print range(1, 10)
# 结果:[1, 2, 3, 4, 5, 6, 7, 8, 9]
 
print(range(1, 10, 2))
# 结果:[1, 3, 5, 7, 9]
 
print(range(30, 0, -2))
# 结果:[30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2]  

 

Set(集合)

集合(set)是一个无序不重复元素的序列。

基本功能是进行成员关系测试和删除重复元素。

可以使用大括号({})或者 set()函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。

定义:由不同元素组成的集合,集合中是一组无序排列的可hash值,可以作为字典的key
特性:
1.集合的目的是将不同的值存放到一起,不同的集合间用来做关系运算,无需纠结于集合中单个值

集合常用操作:关系运算

   in
not in
==
!=
<,<=
>,>=
|,|=:合集
&.&=:交集
-,-=:差集
^,^=:对称差分

集合工厂函数set()

class set(object):
    """
    set() -> new empty set object
    set(iterable) -> new set object
    
    Build an unordered collection of unique elements.
    """
    def add(self, *args, **kwargs): # real signature unknown
        """
        Add an element to a set.
        
        This has no effect if the element is already present.
        """
        pass

    def clear(self, *args, **kwargs): # real signature unknown
        """ Remove all elements from this set. """
        pass

    def copy(self, *args, **kwargs): # real signature unknown
        """ Return a shallow copy of a set. """
        pass

    def difference(self, *args, **kwargs): # real signature unknown
        """
        相当于s1-s2
        
        Return the difference of two or more sets as a new set.
        
        (i.e. all elements that are in this set but not the others.)
        """
        pass

    def difference_update(self, *args, **kwargs): # real signature unknown
        """ Remove all elements of another set from this set. """
        pass

    def discard(self, *args, **kwargs): # real signature unknown
        """
        与remove功能相同,删除元素不存在时不会抛出异常
        
        Remove an element from a set if it is a member.
        
        If the element is not a member, do nothing.
        """
        pass

    def intersection(self, *args, **kwargs): # real signature unknown
        """
        相当于s1&s2
        
        Return the intersection of two sets as a new set.
        
        (i.e. all elements that are in both sets.)
        """
        pass

    def intersection_update(self, *args, **kwargs): # real signature unknown
        """ Update a set with the intersection of itself and another. """
        pass

    def isdisjoint(self, *args, **kwargs): # real signature unknown
        """ Return True if two sets have a null intersection. """
        pass

    def issubset(self, *args, **kwargs): # real signature unknown
        """ 
        相当于s1<=s2
        
        Report whether another set contains this set. """
        pass

    def issuperset(self, *args, **kwargs): # real signature unknown
        """
        相当于s1>=s2
        
         Report whether this set contains another set. """
        pass

    def pop(self, *args, **kwargs): # real signature unknown
        """
        Remove and return an arbitrary set element.
        Raises KeyError if the set is empty.
        """
        pass

    def remove(self, *args, **kwargs): # real signature unknown
        """
        Remove an element from a set; it must be a member.
        
        If the element is not a member, raise a KeyError.
        """
        pass

    def symmetric_difference(self, *args, **kwargs): # real signature unknown
        """
        相当于s1^s2
        
        Return the symmetric difference of two sets as a new set.
        
        (i.e. all elements that are in exactly one of the sets.)
        """
        pass

    def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
        """ Update a set with the symmetric difference of itself and another. """
        pass

    def union(self, *args, **kwargs): # real signature unknown
        """
        相当于s1|s2
        
        Return the union of sets as a new set.
        
        (i.e. all elements that are in either set.)
        """
        pass

    def update(self, *args, **kwargs): # real signature unknown
        """ Update a set with the union of itself and others. """
        pass

    def __and__(self, *args, **kwargs): # real signature unknown
        """ Return self&value. """
        pass

    def __contains__(self, y): # real signature unknown; restored from __doc__
        """ x.__contains__(y) <==> y in x. """
        pass

    def __eq__(self, *args, **kwargs): # real signature unknown
        """ Return self==value. """
        pass

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __ge__(self, *args, **kwargs): # real signature unknown
        """ Return self>=value. """
        pass

    def __gt__(self, *args, **kwargs): # real signature unknown
        """ Return self>value. """
        pass

    def __iand__(self, *args, **kwargs): # real signature unknown
        """ Return self&=value. """
        pass

    def __init__(self, seq=()): # known special case of set.__init__
        """
        set() -> new empty set object
        set(iterable) -> new set object
        
        Build an unordered collection of unique elements.
        # (copied from class doc)
        """
        pass

    def __ior__(self, *args, **kwargs): # real signature unknown
        """ Return self|=value. """
        pass

    def __isub__(self, *args, **kwargs): # real signature unknown
        """ Return self-=value. """
        pass

    def __iter__(self, *args, **kwargs): # real signature unknown
        """ Implement iter(self). """
        pass

    def __ixor__(self, *args, **kwargs): # real signature unknown
        """ Return self^=value. """
        pass

    def __len__(self, *args, **kwargs): # real signature unknown
        """ Return len(self). """
        pass

    def __le__(self, *args, **kwargs): # real signature unknown
        """ Return self<=value. """
        pass

    def __lt__(self, *args, **kwargs): # real signature unknown
        """ Return self<value. """
        pass

    @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    def __ne__(self, *args, **kwargs): # real signature unknown
        """ Return self!=value. """
        pass

    def __or__(self, *args, **kwargs): # real signature unknown
        """ Return self|value. """
        pass

    def __rand__(self, *args, **kwargs): # real signature unknown
        """ Return value&self. """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    def __ror__(self, *args, **kwargs): # real signature unknown
        """ Return value|self. """
        pass

    def __rsub__(self, *args, **kwargs): # real signature unknown
        """ Return value-self. """
        pass

    def __rxor__(self, *args, **kwargs): # real signature unknown
        """ Return value^self. """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ S.__sizeof__() -> size of S in memory, in bytes """
        pass

    def __sub__(self, *args, **kwargs): # real signature unknown
        """ Return self-value. """
        pass

    def __xor__(self, *args, **kwargs): # real signature unknown
        """ Return self^value. """
        pass

    __hash__ = None

查看

查看

 

bytes类型

定义:存8bit整数,数据基于网络传输或内存变量存储到硬盘时需要转成bytes类型,字符串前置b代表为bytes类型

>>> x
'hello sb'
>>> x.encode('gb2312')
b'hello sb'

 

#!/usr/bin/python3

student = {'Tom', 'Jim', 'Mary', 'Tom', 'Jack', 'Rose'}

print(student)   # 输出集合,重复的元素被自动去掉

# 成员测试
if('Rose' in student) :
    print('Rose 在集合中')
else :
	print('Rose 不在集合中')


# set可以进行集合运算
a = set('abracadabra')
b = set('alacazam')

print(a)

print(a - b)     # a和b的差集

print(a | b)     # a和b的并集

print(a & b)     # a和b的交集

print(a ^ b)     # a和b中不同时存在的元素

 以上实例输出结果:

{'Jack', 'Rose', 'Mary', 'Jim', 'Tom'}
Rose 在集合中
{'r', 'b', 'a', 'c', 'd'}
{'r', 'b', 'd'}
{'a', 'l', 'z', 'b', 'm', 'd', 'r', 'c'}
{'a', 'c'}
{'l', 'z', 'b', 'm', 'd', 'r'}

 

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

 

注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。

重复元素在set中自动被过滤:

>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}

 

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

 

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
{1, 2, 3}

 

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}

 

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

 

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

 

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

 

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc'

a-to-str

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

a-b-to-2-strs

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)(1, [2, 3])放入dict或set中,并解释结果。

标准数据类型特性总结

按存值个数区分

标量/原子类型 数字,字符串
容器类型 列表,元组,字典

 

 

按可变不可变区分

可变 列表,字典
不可变 数字,字符串,元组

 

 

按访问顺序区分

直接访问 数字
顺序访问(序列类型) 字符串,列表,元组
key值访问(映射类型) 字典

  

 

 

深浅拷贝

一、数字和字符串

对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

import copy
# ######### 数字、字符串 #########
n1 = 123
# n1 = "i am alex age 10"
print(id(n1))
# ## 赋值 ##
n2 = n1
print(id(n2))
# ## 浅拷贝 ##
n2 = copy.copy(n1)
print(id(n2))
  
# ## 深拷贝 ##
n3 = copy.deepcopy(n1)
print(id(n3))

 其他基本数据类型

对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

1、赋值

赋值,只是创建一个变量,该变量指向原来内存地址,如:

n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
  
n2 = n1

 

2、浅拷贝

浅拷贝,在内存中只额外创建第一层数据

import copy
  
n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
  
n3 = copy.copy(n1)

 

3、深拷贝

深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

import copy
  
n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
  
n4 = copy.deepcopy(n1)

 

posted on 2016-10-23 23:15  Beirut  阅读(518)  评论(0编辑  收藏  举报