手头的语料库依然是msr_training.utf8和msr_test.utf8,它来自于自于SIGHAN Bakeoff 2005的 icwb2-data.rar
1.rmspace.cpp研究院的训练文档是已经分好词,但我们并不需要这个结果,我们要使用计算所有分词系统重新进行分词并进行词性标注,所以第一步要把训练文档中行内的空格去掉。
#include<iostream> #include<fstream> #include<sstream> #include<string> using namespace std; int main(int argc,char *argv[]){ if(argc<3){ cerr<<"Usage:"<<argv[0]<<" inputfile outputfile"<<endl; return 1; } ifstream ifs(argv[1]); ofstream ofs(argv[2]); if(!(ifs && ofs)){ cerr<<"open file failed."<<endl; return 1; } string line,word,line_out; while(getline(ifs,line)){ line_out.clear(); istringstream strstm(line); while(strstm>>word) line_out+=word; ofs<<line_out<<endl; } ifs.close(); ofs.close(); return 0; }
2.对第1步得到的输出文件还需要稍作修善,即把每行句首和句尾的双引号去掉。这个可以用vim来完成:1,$s/^“//g 1,$s/”$//g
3.wordseg.cpp对第2步得到的输出文件进行分词。g++ wordseg.cpp -o wordseg -I/home/orisun/master/ICTCLAS50_Linux_RHAS_32_C/API -lICTCLAS50运行命令时注意要把libICTCLAS50.so拷贝到当前目录下。
#include <string> #include <iostream> #define OS_LINUX #include "ICTCLAS50.h" using namespace std; int main(int argc, char *argv[]) { if (argc < 2) { //命令行中需要给定要处理的文件名 cout << "Usage:command filename" << endl; return 1; } string filename = argv[1]; string outfile = filename + ".ws"; string initPath = "/home/orisun/master/ICTCLAS50_Linux_RHAS_32_C/API"; if (!ICTCLAS_Init(initPath.c_str())) { cout << "Init fails" << endl; return -1; } ICTCLAS_FileProcess(filename.c_str(), outfile.c_str(), CODE_TYPE_UTF8,1); ICTCLAS_Exit(); return 0; }
4.由于我们要做的是词性标注,所以先要对测试文档进行分词。仍然使用wordseg.cpp。
5.rmpos.cpp计算所的分词系统在分词的同时也做了词性标注(修改配置文件Configure.xml是不起作用的),所以现在还得把测试文本中标注好的词性去掉。
#include<iostream> #include<fstream> #include<sstream> #include<string> using namespace std; int main(int argc,char *argv[]){ if(argc<3){ cerr<<"Usage:"<<argv[0]<<" inputfile outputfile"<<endl; return 1; } ifstream ifs(argv[1]); ofstream ofs(argv[2]); if(!(ifs && ofs)){ cerr<<"open file failed."<<endl; return 1; } string line,word,line_out,chinese; while(getline(ifs,line)){ line_out.clear(); istringstream strstm(line); while(strstm>>word){ string::size_type pos=word.find("/"); chinese=word.substr(0,pos); line_out+=chinese+" "; } ofs<<line_out<<endl; } ifs.close(); ofs.close(); return 0; }
6.对训练文本(即第3步的输出)也实行rmpos.cpp。
7.createdict.cpp第5步和第6步生成了训练集和测试集中出现的所有词语和标点符号,现在要把它们都存入GDBM数据库。
#include<sys/stat.h> #include<gdbm.h> #include<iostream> #include<string> #include<fstream> #include<sstream> using namespace std; int main(int argc,char *argv[]){ if(argc<2){ cerr<<"Usage: "<<argv[0]<<" inputfile"; return 1; } ifstream ifs(argv[1]); if(!ifs){ cerr<<"open file failed."<<endl; return 1; } GDBM_FILE dbm_ptr; dbm_ptr = gdbm_open("dict_db",0,GDBM_WRCREAT,S_IRUSR | S_IWUSR,NULL); char v='w'; datum key,value; value.dptr=&v; value.dsize=1; string line,word; while(getline(ifs,line)){ istringstream strstm(line); while(strstm>>word){ char *chinese=const_cast<char*>(word.c_str()); key.dptr=chinese; key.dsize=word.size(); //cout<<chinese<<"\t"<<word.size()<<endl; gdbm_store(dbm_ptr,key,value,GDBM_REPLACE); } } ifs.close(); gdbm_close(dbm_ptr); return 0; }
8.indexword.cpp对数据库中所有的词语(包含标点)进行序号的标记。
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<sys/stat.h> #include<gdbm.h> #include<ctype.h> #define DB_FILE_BLOCK "dict_db" int main(int argc,char* argv[]){ GDBM_FILE dbm_ptr; dbm_ptr = gdbm_open(DB_FILE_BLOCK,0,GDBM_WRCREAT,S_IRUSR | S_IWUSR,NULL); datum key,data; long index=0; //从0开始编号 char index_str[10]={0}; for(key=gdbm_firstkey(dbm_ptr);key.dptr;key=gdbm_nextkey(dbm_ptr,key)){ data=gdbm_fetch(dbm_ptr,key); bzero(index_str,sizeof(index_str)); sprintf(index_str,"%ld",index++); data.dptr=index_str; data.dsize=sizeof(index_str); gdbm_store(dbm_ptr,key,data,GDBM_REPLACE); } gdbm_close(dbm_ptr); return 0; }
9.query.c和lookup.c(可选辅助)前者打印输出数据库中的所有数据,后者根据用户输出的key去GDBM中查询对应的value。
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<sys/stat.h> #include<gdbm.h> #include<ctype.h> #define DB_FILE_BLOCK "dict_db" int main(int argc,char* argv[]){ GDBM_FILE dbm_ptr; dbm_ptr = gdbm_open(DB_FILE_BLOCK,0,GDBM_READER,S_IRUSR | S_IWUSR,NULL); datum key,data; for(key=gdbm_firstkey(dbm_ptr);key.dptr;key=gdbm_nextkey(dbm_ptr,key)){ data=gdbm_fetch(dbm_ptr,key); printf("%s--%s\t",key.dptr,data.dptr); } printf("\n"); gdbm_close(dbm_ptr); return 0; }
#include<sys/stat.h> #include<gdbm.h> #include<stdio.h> #include<string.h> #include<stdlib.h> int main(int argc,char *argv[]){ char *word=(char*)malloc(50); GDBM_FILE dbm_ptr; dbm_ptr=gdbm_open("dict_db",0,GDBM_WRCREAT,S_IRUSR | S_IWUSR,NULL); datum key,value; while(1){ printf("please input a word.\n"); bzero(word,50); scanf("%s",word); if(strcmp(word,"exit")==0) break; key.dptr=word; key.dsize=strlen(word); value=gdbm_fetch(dbm_ptr,key); if(value.dsize==0){ printf("%s not exist in dict.\n",word); } else{ printf("%s--%s\n",key.dptr,value.dptr); } } gdbm_close(dbm_ptr); return 0; }
10.AMatrix.cpp统计训练文本(当然是第3步的输出)生成状态转移矩阵和初始状态概率矩阵,分别写入A.mat和PI.mat。
header.h头文件中主要包含ICTCLAS的词性标注集和Good-Turing平滑算法。
#ifndef _HEADER_H #define _HEADER_H #include<vector> #include<list> #include<map> using namespace std; const int POS_NUM=97; //计算所汉语词性标记集去掉标点符号共有POS_NUM个元素 /*POS_NUM种词性,即POS_NUM种状态*/ string posarr[POS_NUM]={"n","nr","nr1","nr2","nrj","nrf","ns","nsf","nt","nz", "nl","ng","t","tg","s","f","v","vd","vn","vshi", "vyou","vf","vx","vi","vl","vg","a","ad","an","ag", "al","b","bl","z","r","rr","rz","rzt","rzs","rzv", "ry","ryt","rys","ryv","Rg","m","mq","Mg","q","qv", "qt","d","dl","dg","p","pba","pbei","c","cc","u", "uzhe","ule","uguo","ude1","ude2","ude3","usuo","udeng","uyy","udh", "uls","uzhi","ulian","e","y","o","h","k","x","xx", "xu","w","wkz","wky","wyz","wyy","wj","ww","wd","wf", "wn","wm","ws","wp","wb","wh","wt"}; void goodturing(const int count[],double prob[],int len){ map<int, list<int> > count_map; //map可以自动按key排好序 int N=0; for(int i=0;i<len;++i){ int c=count[i]; N+=c; map<int, list<int> >::const_iterator itr; itr=count_map.find(c); if(itr==count_map.end()){ list<int> l; l.push_back(i); count_map[c]=l; } else{ count_map[c].push_back(i); } } map<int, list<int> >::const_iterator iter=count_map.begin(); while(iter!=count_map.end()){ double pr; int r=iter->first; int nr=iter->second.size(); if(++iter!=count_map.end()){ int r_new=iter->first; if(r_new=r+1){ int nr_1=iter->second.size(); pr=(1.0+r)*nr_1/(N*nr); } else{ pr=1.0*r/N; } } else{ pr=1.0*r/N; } list<int> l=(--iter)->second; list<int>::const_iterator itr1=l.begin(); while(itr1!=l.end()){ int index=*itr1; itr1++; prob[index]=pr; } ++iter; } //概率归一化 double sum=0; for(int i=0;i<len;++i) sum+=prob[i]; for(int i=0;i<len;++i) prob[i]/=sum; } #endif
#include<iostream> #include<string> #include<fstream> #include<sstream> #include<vector> #include<algorithm> #include<iomanip> #include<iterator> #include<cassert> #include"header.h" int A[POS_NUM][POS_NUM]; //记录状态间转移的次数 int PI[POS_NUM]; //记录各种状态出现的次数 inline int indexof(string search){ for(int i=0;i<POS_NUM;++i){ if(search==posarr[i]){ return i; } } return -1; } int main(int argc,char *argv[]){ if(argc<2){ cout<<"Usage:"<<argv[0]<<" pos_tagged_file"<<endl; return 1; } //打开输入文件 ifstream ifs(argv[1]); if(!ifs){ cerr<<"open file "<<argv[1]<<" failed."<<endl; return 1; } string line,word; while(getline(ifs,line)){ istringstream strstm(line); string pre,post; //pre是前一个状态,post是后一个状态 strstm>>word; string::size_type pos=word.find("/"); post=word.substr(pos+1); int index1,index2; index2=indexof(post); if(index2<0){ cout<<post<<" not exist"<<endl; return 1; } PI[index2]++; while(strstm>>word){ pre=post; pos=word.find("/"); post=word.substr(pos+1); //cout<<"pre="<<pre<<"\tpost="<<post<<endl; index1=indexof(pre); //if(index1<0){ // cout<<pre<<" not exist"<<endl; // return 1; //} index2=indexof(post); //if(index2<0){ // cout<<post<<" not exist"<<endl; // return 1; //} A[index1][index2]++; PI[index2]++; } } ifs.close(); ofstream ofs1("A.mat"); ofstream ofs2("PI.mat"); if(!(ofs1 && ofs2)){ cerr<<"create file failed."<<endl; return 1; } ofs1<<setprecision(8); ofs2<<setprecision(8); double arr_out[POS_NUM]={0.0}; for(int i=0;i<POS_NUM;++i){ goodturing(A[i],arr_out,POS_NUM); for(int j=0;j<POS_NUM;++j){ ofs1<<arr_out[j]<<"\t"; } ofs1<<endl; } goodturing(PI,arr_out,POS_NUM); for(int j=0;j<POS_NUM;++j){ ofs2<<arr_out[j]<<"\t"; } ofs2<<endl; ofs1.close(); ofs2.close(); return 0; }
11.BMatrix.cpp统计训练文本(当然是第3步的输出)生成发射矩阵,写入B.mat。
#include<iostream> #include<fstream> #include<sstream> #include<string> #include<iomanip> #include<cassert> #include<cstdlib> #include<gdbm.h> #include<sys/stat.h> #include"header.h" const int TERM_NUM=70000; int matrix[POS_NUM][TERM_NUM]={0.0}; //混淆矩阵(或称发射矩阵) inline int indexof(string search){ for(int i=0;i<POS_NUM;++i){ if(search==posarr[i]){ return i; } } return -1; } int main(int argc,char *argv[]){ if(argc<2){ cout<<"Usage: "<<argv[0]<<" pos_tagged_file"<<endl; return 1; } ifstream ifs(argv[1]); if(!ifs){ cerr<<"open file "<<argv[1]<<" failed."<<endl; return 1; } GDBM_FILE dbm_ptr; dbm_ptr=gdbm_open("dict_db",0,GDBM_READER,S_IRUSR|S_IWUSR,NULL); datum key,value; string line,word,term,pos; string slash="/"; while(getline(ifs,line)){ istringstream strstm(line); while(strstm>>word){ string::size_type loc=word.find(slash); assert(loc!=string::npos); term=word.substr(0,loc); //词语 pos=word.substr(loc+1); //词性 //cout<<term<<"\t"<<pos<<endl; int rowindex=indexof(pos); assert(rowindex>=0); key.dsize=term.size(); key.dptr=const_cast<char*>(term.c_str()); value=gdbm_fetch(dbm_ptr,key); int colindex=atoi(value.dptr); //cout<<rowindex<<"\t"<<colindex<<endl; matrix[rowindex][colindex]++; } } ifs.close(); gdbm_close(dbm_ptr); //将发射矩阵写入文件 ofstream ofs("B.mat"); if(!ofs){ cerr<<"create file B.mat failed."<<endl; return 1; } ofs<<setprecision(8); double arr_out[TERM_NUM]={0.0}; for(int i=0;i<POS_NUM;++i){ goodturing(matrix[i],arr_out,TERM_NUM); for(int j=0;j<TERM_NUM;++j){ ofs<<arr_out[j]<<"\t"; } ofs<<endl; } ofs.close(); return 0; }
12.postag.cpp对测试文本(第5步的输出)进行词性标注。
#include<sys/stat.h> #include<ctype.h> #include<gdbm.h> #include<iostream> #include<sstream> #include<fstream> #include<string> #include<cstring> #include<cstdlib> #include<stack> #include<vector> #include"header.h" const string DB_FILE_BLOCK="dict_db"; const int TERM_NUM=70000; const int TERM_MAXLEN=100; GDBM_FILE dbm_ptr; double PI[POS_NUM]; //初始状态概率矩阵 double A[POS_NUM][POS_NUM]; //状态转移矩阵 double B[POS_NUM][TERM_NUM]; //发射矩阵 /*从文件中读出HMM模型参数*/ void initHMM(string f1,string f2,string f3){ ifstream ifs1(f1.c_str()); ifstream ifs2(f2.c_str()); ifstream ifs3(f3.c_str()); if(!(ifs1 && ifs2 && ifs3)){ cerr<<"Open file failed!"<<endl; exit(1); } //读取PI string line; if(getline(ifs1,line)){ istringstream strstm(line); string word; for(int i=0;i<POS_NUM;++i){ strstm>>word; PI[i]=atof(word.c_str()); } }else{ cerr<<"Read PI failed!"<<endl; exit(1); } //读取A for(int i=0;i<POS_NUM;++i){ getline(ifs2,line); istringstream strstm(line); string word; for(int j=0;j<POS_NUM;++j){ strstm>>word; A[i][j]=atof(word.c_str()); } } //读取B for(int i=0;i<POS_NUM;++i){ getline(ifs3,line); istringstream strstm(line); string word; for(int j=0;j<TERM_NUM;++j){ strstm>>word; B[i][j]=atof(word.c_str()); } } ifs1.close(); ifs2.close(); ifs3.close(); } /*Viterbi算法进行词性标注*/ void viterbi(vector<string> terms,string &result){ if(terms.size()==0) return; result.clear(); int row=terms.size(); //观察序列的长度 double **Q=new double*[row]; //初始化Q矩阵 for(int i=0;i<row;++i) Q[i]=new double[POS_NUM](); int **Path=new int*[row]; //初始化Path矩阵 for(int i=0;i<row;++i) Path[i]=new int[POS_NUM](); //给Q和Path矩阵的第1行赋值 datum key,data; char chinese[TERM_MAXLEN]={0}; char *bp=const_cast<char*>(terms[0].c_str()); strncpy(chinese,bp,terms[0].size()); //读取句子中的第1个词 key.dptr=chinese; key.dsize=terms[0].size(); data=gdbm_fetch(dbm_ptr,key); //从数据库中获取汉字对应的index,该index对应发射矩阵的列 int colindex=atoi(data.dptr); for(int i=0;i<POS_NUM;++i){ Path[0][i]=-1; Q[0][i]=PI[i]*B[i][colindex]; } //给Q和Path矩阵的后续行赋值 for(int i=1;i<row;++i){ bp=const_cast<char*>(terms[i].c_str()); strncpy(chinese,bp,terms[i].size()); //读取句子中的下一个汉字 key.dptr=chinese; key.dsize=terms[i].size(); data=gdbm_fetch(dbm_ptr,key); colindex=atoi(data.dptr); for(int j=0;j<POS_NUM;++j){ double max=-1.0; int maxindex=-1; for(int k=0;k<POS_NUM;++k){ double product=Q[i-1][k]*A[k][j]; if(product>max){ max=product; maxindex=k; } } Q[i][j]=max*B[j][colindex]; Path[i][j]=maxindex; } } //找Q矩阵最后一行的最大值 double max=-1.0; int maxindex=-1; for(int i=0;i<POS_NUM;++i){ if(Q[row-1][i]>max){ max=Q[row-1][i]; maxindex=i; } } //从maxindex出发,根据Path矩阵找出最可能的状态序列 stack<int> st; st.push(maxindex); for(int i=row-1;i>0;--i){ maxindex=Path[i][maxindex]; st.push(maxindex); } //释放二维数组 for(int i=0;i<row;++i){ delete []Q[i]; delete []Path[i]; } delete []Q; delete []Path; //根据标记好的状态序列分词 int mark=-1; for(int i=0;i<terms.size();++i){ mark=st.top(); st.pop(); result+=terms[i]+"/"+posarr[mark]+"\t"; } } int main(int argc,char *argv[]){ if(argc<3){ cout<<"Usage: "<<argv[0]<<" inputfile outputfile"<<endl; return 1; } dbm_ptr = gdbm_open(DB_FILE_BLOCK.c_str(),0,GDBM_READER,S_IRUSR | S_IWUSR,NULL); initHMM("PI.mat","A.mat","B.mat"); ifstream ifs(argv[1]); ofstream ofs(argv[2]); if(!(ifs&&ofs)){ cerr<<"Open file failed!"<<endl; return 1; } string line; //循环读取每一行 while(getline(ifs,line)){ istringstream strstm(line); string term; vector<string> term_vec; string result; while(strstm>>term){ term_vec.push_back(term); } viterbi(term_vec,result); ofs<<result<<endl; } ifs.close(); ofs.close(); gdbm_close(dbm_ptr); return 0; }
看一下效果吧,左边是ICTCLAS的pos-tagging结果,作为标准答案,右边是我用一阶HMM词性标注的结果。
使用简单的加1平滑:
可以看到词性标注准确度还很低,并且"mq"贡献了大部分的错误率。
使用Good-Turing平滑后的效果,大体上已经看不出有什么错误:
本文来自博客园,作者:高性能golang,转载请注明原文链接:https://www.cnblogs.com/zhangchaoyang/articles/2567610.html