杂记

ZooKeeper的用途:distributed coordination;maintaining configuration information, naming, providing distributed synchronization, and providing group services.

Zookeeper的节点都是存放在内存中的,所以读写速度很快。更新日志被记录到了磁盘中,以便用于恢复数据。在更新内在中节点数之前,会先序列化到磁盘中。

为避免单点失效,zookeeper的数据是在多个server上留有备份的。不管客户端连接到的是哪个server,它看到的数据都是一致的。如果client和一个server的TCP连接失效,它会尝试连接另一个server。众多server中有一个是leader。

所有的server 都必须知道彼此的存在。

zookeeper在读写比例为10:1时性能最佳。

每个znode上data的读写都是原子操作。

读是局部性的,即client只需要从与它相连的server上读取数据即可;而client有写请求的话,与之相连的server会通知leader,然后leader会把写操作分发给所有server。所以定要比读慢很多。

在建立zookeeper连接时,给定的地址字符串可以是这样的:"192.168.1.1:3000,192.168.1.2:3000,192.168.1.3:3000/app/a",以后的所有操作就都是在/app/a下进行的。实际上只连接到一台ZooKeeper机器就可了,没必要指定每台zk机器的IP和端口,即用“192.168.1.2:3000/app/a”也是可以的。

当client与一个server断连接时(可能是因为server失效了),它就收不到任何watches;当它与另一个server建立好连接后,它就会收到"session expired"通知。

ACL不是递归的,它只针对当前节点,对子节点没有任何影响。

默认情况下日志文件和数据文件是放在同一个目录下的,为缩短延迟提高响应性,你可以把日志文件单独放在另一个目录下。

为避免swaping,运行java时最好把可用物理内在调得大一些,比如对于4G的内在,可以把它调到3G。java有以下两个运行参数:

-Xms<size>
设置虚拟机可用内存堆的初始大小,缺省单位为字节,该大小为1024的整数倍并且要大于1MB,可用k(K)或m(M)为单位来设置较大的内存数。初始堆大小为2MB。
例如:-Xms6400K,-Xms256M
-Xmx<size>
设置虚拟机内存堆的最大可用大小,缺省单位为字节。该值必须为1024整数倍,并且要大于2MB。可用k(K)或m(M)为单位来设置较大的内存数。缺省堆最大值为64MB。
例如:-Xmx81920K,-Xmx80M

CreateMode

PERSISTENT:创建后只要不删就永久存在

EPHEMERAL:会话结束年结点自动被删除,EPHEMERAL结点不允许有子节点

SEQUENTIAL:节点名末尾会自动追加一个10位数的单调递增的序号,同一个节点的所有子节点序号是单调递增的

PERSISTENT_SEQUENTIAL:结合PERSISTENT和SEQUENTIAL

EPHEMERAL_SEQUENTIAL:结合EPHEMERAL和SEQUENTIAL

package basic;

import java.io.IOException;
import java.util.List;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;

public class Demo {
    private static final int TIMEOUT = 3000;

    public static void main(String[] args) throws IOException {
        ZooKeeper zkp = new ZooKeeper("localhost:2181", TIMEOUT, null);
        try {
            // 创建一个EPHEMERAL类型的节点,会话关闭后它会自动被删除
            zkp.create("/node1", "data1".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.EPHEMERAL);
            if (zkp.exists("/node1", false) != null) {
                System.out.println("node1 exists now.");
            }
            try {
                // 当节点名已存在时再去创建它会抛出KeeperException(即使本次的ACL、CreateMode和上次的不一样)
                zkp.create("/node1", "data1".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT);
            } catch (KeeperException e) {
                System.out.println("KeeperException caught:" + e.getMessage());
            }

            // 关闭会话
            zkp.close();
            
            zkp = new ZooKeeper("localhost:2181", TIMEOUT, null);
            //重新建立会话后node1已经不存在了
            if (zkp.exists("/node1", false) == null) {
                System.out.println("node1 dosn't exists now.");
            }
            //创建SEQUENTIAL节点
            zkp.create("/node-", "same data".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT_SEQUENTIAL);
            zkp.create("/node-", "same data".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT_SEQUENTIAL);
            zkp.create("/node-", "same data".getBytes(), Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT_SEQUENTIAL);
            List<String> children = zkp.getChildren("/", null);
            System.out.println("Children of root node:");
            for (String child : children) {
                System.out.println(child);
            }

            zkp.close();
        } catch (Exception e) {
            System.out.println(e.getMessage());
        }
    }
}

第一次运行输出:

node1 exists now.
KeeperException caught:KeeperErrorCode = NodeExists for /node1
node1 dosn't exists now.
Children of root node:
node-0000000003
zookeeper
node-0000000002
node-0000000001

第二次运行输出:

node1 exists now.
KeeperException caught:KeeperErrorCode = NodeExists for /node1
node1 dosn't exists now.
Children of root node:
node-0000000003
zookeeper
node-0000000002
node-0000000001
node-0000000007
node-0000000005
node-0000000006

注意两次会话中创建的PERSISTENT_SEQUENTIAL节点序号并不是连续的,比如上例中缺少了node-0000000004.

Watcher & Version

watcher分为两大类:data watches和child watches。getData()和exists()上可以设置data watches,getChildren()上可以设置child watches。

setData()会触发data watches;

create()会触发data watches和child watches;

delete()会触发data watches和child watches.

如果对一个不存在的节点调用了exists(),并设置了watcher,而在连接断开的情况下create/delete了该znode,则watcher会丢失。

在server端用一个map来存放watcher,所以相同的watcher在map中只会出现一次,只要watcher被回调一次,它就会被删除----map解释了watcher的一次性。比如如果在getData()和exists()上设置的是同一个data watcher,调用setData()会触发data watcher,但是getData()和exists()只有一个会收到通知。

 1 import java.io.IOException;
 2 
 3 import org.apache.zookeeper.CreateMode;
 4 import org.apache.zookeeper.KeeperException;
 5 import org.apache.zookeeper.WatchedEvent;
 6 import org.apache.zookeeper.Watcher;
 7 import org.apache.zookeeper.ZooDefs.Ids;
 8 import org.apache.zookeeper.ZooKeeper;
 9 import org.apache.zookeeper.data.Stat;
10 
11 public class SelfWatcher implements Watcher{
12     
13     ZooKeeper zk=null;
14 
15     @Override
16     public void process(WatchedEvent event) {
17         System.out.println(event.toString());
18     }
19     
20     SelfWatcher(String address){
21         try{
22             zk=new ZooKeeper(address,3000,this);     //在创建ZooKeeper时第三个参数负责设置该类的默认构造函数
23             zk.create("/root", new byte[0], Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
24         }catch(IOException e){
25             e.printStackTrace();
26             zk=null;
27         }catch (KeeperException e) {
28             e.printStackTrace();
29         } catch (InterruptedException e) {
30             e.printStackTrace();
31         }
32     }
33     
34     void setWatcher(){
35         try {
36             Stat s=zk.exists("/root", true);
37             if(s!=null){
38                 zk.getData("/root", false, s);
39             }
40         } catch (KeeperException e) {
41             e.printStackTrace();
42         } catch (InterruptedException e) {
43             e.printStackTrace();
44         }
45     }
46     
47     void trigeWatcher(){
48         try {
49             Stat s=zk.exists("/root", false);        //此处不设置watcher
50             zk.setData("/root", "a".getBytes(), s.getVersion());    //修改数据时需要提供version,version设为-1表示强制修改
51         }catch(Exception e){
52             e.printStackTrace();
53         }
54     }
55     
56     void disconnect(){
57         if(zk!=null)
58             try {
59                 zk.close();
60             } catch (InterruptedException e) {
61                 e.printStackTrace();
62             }
63     }
64     
65     public static void main(String[] args){
66         SelfWatcher inst=new SelfWatcher("127.0.0.1:2181");
67         inst.setWatcher();
68         inst.trigeWatcher();
69         inst.disconnect();
70     }
71 
72 }

可以在创建Zookeeper时指定默认的watcher回调函数,这样在getData()、exists()和getChildren()收到通知时都会调用这个函数--只要它们在参数中设置了true。所以如果把代码22行的this改为null,则不会有任何watcher被注册。

上面的代码输出:

WatchedEvent state:SyncConnected type:None path:null
WatchedEvent state:SyncConnected type:NodeDataChanged path:/root

之所会输出第1 行是因为本身在建立ZooKeeper连接时就会触发watcher。输出每二行是因为在代码的第36行设置了true。

WatchEvent有三种类型:NodeDataChanged、NodeDeleted和NodeChildrenChanged。

调用setData()时会触发NodeDataChanged;

调用create()时会触发NodeDataChanged和NodeChildrenChanged;

调用delete()时上述三种event都会触发。

如果把代码的第36--39行改为:

Stat s=zk.exists("/root", false);
if(s!=null){
    zk.getData("/root", true, s);
}

Stat s=zk.exists("/root", true);
if(s!=null){
    zk.getData("/root", true, s);
}

跟上面的输出是一样的。这也证明了watcher是一次性的。

设置watcher的另外一种方式是不使用默认的watcher,而是在getData()、exists()和getChildren()中指定各自的watcher。示例代码如下:

 1 public class SelfWatcher{
 2     
 3     ZooKeeper zk=null;
 4 
 5     private Watcher getWatcher(final String msg){
 6         return new Watcher(){
 7             @Override
 8             public void process(WatchedEvent event) {
 9                 System.out.println(msg+"\t"+event.toString());
10             }
11         };
12     }
13     
14     SelfWatcher(String address){
15         try{
16             zk=new ZooKeeper(address,3000,null);     //在创建ZooKeeper时第三个参数负责设置该类的默认构造函数
17             zk.create("/root", new byte[0], Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
18         }catch(IOException e){
19             e.printStackTrace();
20             zk=null;
21         }catch (KeeperException e) {
22             e.printStackTrace();
23         } catch (InterruptedException e) {
24             e.printStackTrace();
25         }
26     }
27     
28     void setWatcher(){
29         try {
30             Stat s=zk.exists("/root", getWatcher("EXISTS"));
31             if(s!=null){
32                 zk.getData("/root", getWatcher("GETDATA"), s);
33             }
34         } catch (KeeperException e) {
35             e.printStackTrace();
36         } catch (InterruptedException e) {
37             e.printStackTrace();
38         }
39     }
40     
41     void trigeWatcher(){
42         try {
43             Stat s=zk.exists("/root", false);        //此处不设置watcher
44             zk.setData("/root", "a".getBytes(), s.getVersion());
45         }catch(Exception e){
46             e.printStackTrace();
47         }
48     }
49     
50     void disconnect(){
51         if(zk!=null)
52             try {
53                 zk.close();
54             } catch (InterruptedException e) {
55                 e.printStackTrace();
56             }
57     }
58     
59     public static void main(String[] args){
60         SelfWatcher inst=new SelfWatcher("127.0.0.1:2181");
61         inst.setWatcher();
62         inst.trigeWatcher();
63         inst.disconnect();
64     }
65 
66 }

输出:

GETDATA WatchedEvent state:SyncConnected type:NodeDataChanged path:/root
EXISTS WatchedEvent state:SyncConnected type:NodeDataChanged path:/root

上例中由于exists和getData分别设置了两个不同的Watcher实例,所以虽然watcher都是由同了一个NodeDataChanged触发的,但exists()和getData()都会收到通知。由于16行创建Zookeeper时没有设置watcher(参数为null),所以建立连接时没有收到通知。

关于Version:为了方便进行cache validations 和coordinated updates,每个znode都有一个stat结构体,其中包含:version的更改记录、ACL的更改记录、时间戳。znode的数据每更改一次,version就会加1。客户端每次检索data的时候都会把data的version一并读出出来。修改数据时需要提供version。

zk.delete("/root", -1);        //触发data watches和children watches。version设为-1时表示要强制删除
zk.getChildren("/root", getWatcher("LISTCHILDREN"));    //getChildren()上可以设置children watches

输出:

LISTCHILDREN WatchedEvent state:SyncConnected type:NodeDeleted path:/root

zk.delete("/root", -1);        //触发data watches和children watches
Stat s=zk.exists("/root", getWatcher("EXISTS"));    //exists()上可以设置data watches
if(s!=null){
    zk.getChildren("/root", getWatcher("LISTCHILDREN"));
}

输出:

EXISTS WatchedEvent state:SyncConnected type:NodeDeleted path:/root
LISTCHILDREN WatchedEvent state:SyncConnected type:NodeDeleted path:/root

zk.delete("/root", -1);        //触发data watches和children watches
Stat s=zk.exists("/root", getWatcher("EXISTS"));
if(s!=null){
    zk.getData("/root", getWatcher("GETDATA"), s);
    zk.getChildren("/root", getWatcher("LISTCHILDREN"));
}

输出:

GETDATA WatchedEvent state:SyncConnected type:NodeDeleted path:/root
LISTCHILDREN WatchedEvent state:SyncConnected type:NodeDeleted path:/root
EXISTS WatchedEvent state:SyncConnected type:NodeDeleted path:/root

tat s=zk.exists("/root", false);        
zk.setData("/root", "a".getBytes(), s.getVersion());        
zk.delete("/root", -1);        

Stat s=zk.exists("/root", getWatcher("EXISTS"));
if(s!=null){
    zk.getData("/root", getWatcher("GETDATA"), s);
    zk.getChildren("/root", getWatcher("LISTCHILDREN"));
}

输出:

GETDATA WatchedEvent state:SyncConnected type:NodeDataChanged path:/root
EXISTS WatchedEvent state:SyncConnected type:NodeDataChanged path:/root
LISTCHILDREN WatchedEvent state:SyncConnected type:NodeDeleted path:/root

按说data watches触发了两次,但是exists()和getData()只会收到一次通知。

Barriers and Queues

Barrier是指:

1)所有的线程都到达barrier后才能进行后续的计算

或者

2)所有的线程都完成自己的计算后才能离开barrier

Double Barrier是指同时具有上述两点。

Queue就不说了,一个产生--消费模型,先生产的先被消费。

Double Barrier的实现:

enter barrier:
1.建一个根节点"/root"
2.想进入barrier的线程在"/root"下建立一个子节点"/root/c_i"
3.循环监听"/root"孩子节点数目的变化,当其达到size时就说明有size个线程都已经barrier点了

leave barrier:
1.想离开barrier的线程删除其在"/root"下建立的子节点
2.循环监听"/root"孩子节点数目的变化,当size减到0时它就可以离开barrier了

Queue的实现:

1.建立一个根节点"/root"
2.生产线程在"/root"下建立一个SEQUENTIAL子节点
3.消费线程检查"/root"有没有子节点,如果没有就循环监听"/root"子节点的变化,直到它有子节点。删除序号最小的子节点。

原代码:

package sync;

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.util.List;
import java.util.Random;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.data.Stat;

public class SyncPrimitive implements Watcher {
	static ZooKeeper zk = null;
	static Integer mutex;
	String root;

	//同步原语
	SyncPrimitive(String address) {
		if (zk == null) {
			try {
				System.out.println("Starting ZK:");
				//建立Zookeeper连接,并且指定watcher
				zk = new ZooKeeper(address, 3000, this);
				//初始化锁对象
				mutex = new Integer(-1);
				System.out.println("Finished starting ZK:" + zk);
			} catch (IOException e) {
				System.out.println(e.toString());
				zk = null;
			}
		}
	}

	@Override
	synchronized public void process(WatchedEvent event) {
		synchronized (mutex) {
			//有事件发生时,调用notify,使其他wait()点得以继续
			mutex.notify();
		}

	}

	static public class Barrier extends SyncPrimitive {
		int size;
		String name;

		Barrier(String address, String root, int size) {
			super(address);
			this.root = root;
			this.size = size;
			if (zk != null) {
				try {
					//一个barrier建立一个根目录
					Stat s = zk.exists(root, false);		//不注册watcher
					if (s == null) {
						zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
								CreateMode.PERSISTENT);
					}
				} catch (KeeperException e) {
					System.out
							.println("keeper exception when instantiating queue:"
									+ e.toString());
				} catch (InterruptedException e) {
					System.out.println("Interrupted exception.");
				}
			}
			try {
				//获取自己的主机名
				name = new String(InetAddress.getLocalHost()
						.getCanonicalHostName().toString());
			} catch (UnknownHostException e) {
				System.out.println(e.toString());
			}
		}

		boolean enter() throws KeeperException, InterruptedException {
			//在根目录下创建一个子节点.create和delete都会触发children wathes,这样getChildren就会收到通知,process()就会被调用
			zk.create(root + "/" + name, new byte[0], Ids.OPEN_ACL_UNSAFE,
					CreateMode.EPHEMERAL_SEQUENTIAL);
			//一直等,直到根目录下的子节点数目达到size时,函数退出
			while (true) {
				synchronized (mutex) {
					List<String> list = zk.getChildren(root, true);
					if (list.size() < size) {
						mutex.wait();		//释放mutex上的锁
					} else {
						return true;
					}
				}
			}
		}

		boolean leave() throws KeeperException, InterruptedException {
			//删除自己创建的节点
			zk.delete(root + "/" + name, 0);
			//一直等,直到根目录下有子节点时,函数退出
			while (true) {
				synchronized (mutex) {
					List<String> list = zk.getChildren(root, true);
					if (list.size() > 0) {
						mutex.wait();
					} else {
						return true;
					}
				}
			}
		}

	}

	static public class Queue extends SyncPrimitive {
		Queue(String address, String name) {
			super(address);
			this.root = name;
			if (zk != null) {
				try {
					//一个queue建立一个根目录
					Stat s = zk.exists(root, false);
					if (s == null) {
						zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
								CreateMode.PERSISTENT);
					}
				} catch (KeeperException e) {
					System.out
							.println("keeper exception when instantiating queue:"
									+ e.toString());
				} catch (InterruptedException e) {
					System.out.println("Interrupted exception.");
				}
			}
		}

		//参数i是要创建节点的data
		boolean produce(int i) throws KeeperException, InterruptedException {
			ByteBuffer b = ByteBuffer.allocate(4);
			byte[] value;
			b.putInt(i);
			value = b.array();

			//根目录下创建一个子节点,因为是SEQUENTIAL的,所以先创建的节点具有较小的序号
			zk.create(root + "/element", value, Ids.OPEN_ACL_UNSAFE,
					CreateMode.PERSISTENT_SEQUENTIAL);
			return true;
		}

		int consume() throws KeeperException, InterruptedException {
			int retvalue = -1;
			Stat stat = null;
			while (true) {
				synchronized (mutex) {
					List<String> list = zk.getChildren(root, true);		//并不能保证list[0]就是序号最小的
					//如果根目录下没有子节点就一直等
					if (list.size() == 0) {
						System.out.println("Going to wait");
						mutex.wait();
					}
					//找到序号最小的节点将其删除
					else {
						Integer min = new Integer(list.get(0).substring(7));
						for (String s : list) {
							Integer tmp = new Integer(s.substring(7));
							if (tmp < min)
								min = tmp;
						}
						System.out.println("Temporary value:" + root
								+ "/element" + min);
						byte[] b = zk.getData(root + "/element" + min, false,
								stat);
						zk.delete(root + "/element" + min, 0);
						ByteBuffer buffer = ByteBuffer.wrap(b);
						retvalue = buffer.getInt();
						return retvalue;
					}
				}
			}
		}
	}

	public static void main(String[] args) {
		if (args[0].equals("qTest"))
			queueTest(args);
		else
			barrierTest(args);
	}

	private static void barrierTest(String[] args) {
		Barrier b = new Barrier(args[1], "/b1", new Integer(args[2]));
		try {
			boolean flag = b.enter();
			System.out.println("Enter barrier:" + args[2]);
			if (!flag)
				System.out.println("Error when entering the barrier");
		} catch (KeeperException e) {

		} catch (InterruptedException e) {
		}

		Random rand = new Random();
		int r = rand.nextInt(100);
		for (int i = 0; i < r; i++) {
			try {
				Thread.sleep(100);
			} catch (InterruptedException e) {

			}
		}
		try {
			b.leave();
		} catch (KeeperException e) {

		} catch (InterruptedException e) {
		}
		System.out.println("Left barrier");
	}

	private static void queueTest(String[] args) {
		Queue q = new Queue(args[1], "/app1");
		System.out.println("Input:" + args[1]);
		int i;
		Integer max = new Integer(args[2]);

		if (args[3].equals("p")) {
			System.out.println("Producer");
			for (i = 0; i < max; i++)
				try {
					q.produce(10 + 1);
				} catch (KeeperException e) {

				} catch (InterruptedException e) {
				}
		} else {
			System.out.println("Consumer");
			for (i = 0; i < max; i++)
				try {
					int r = q.consume();
					System.out.println("Item:" + r);
				} catch (KeeperException e) {
					i--;
				} catch (InterruptedException e) {
				}
		}
	}

}

Locks

获得锁:
1.创建根节点"/root"
2.在根节点下新建子节点"/root/c-xxxxxx",SEQUENTIAL模式
3.对根节点调用getChildren(),如果第2步创建的节点是所有子节点中序号最小的,则获得锁;否则进入第4步
4.在序号最小的子节点上调用exists(),当序号最小的子节点被删除后返回第3步

释放锁:
删除自己创建的子节点即可

原代码:

package sync;

import java.io.IOException;
import java.net.InetAddress;
import java.util.List;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

public class Locks implements Watcher{
	
	static ZooKeeper zk=null;
	static Integer mutex=null;
	String name=null;
	String path=null;

	@Override
	synchronized public void process(WatchedEvent event) {
		synchronized(mutex){
			mutex.notify();
		}
	}
	
	Locks(String address){
		try{
			zk=new ZooKeeper(address,2000,this);		
			zk.create("/lock", new byte[0], Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
			mutex=new Integer(-1);
			name = new String(InetAddress.getLocalHost().getCanonicalHostName().toString());
		}catch(IOException e){
			zk=null;
		} catch (KeeperException e) {
			e.printStackTrace();
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
	
	private int minSeq(List<String> list){
		 int min=Integer.parseInt(list.get(0).substring(14));
		 for(int i=1;i<list.size();i++){
			 if(min<Integer.parseInt(list.get(i).substring(14)))
				min=Integer.parseInt(list.get(i).substring(14));
		 }
		 return min;
	}
	
	boolean getLock() throws KeeperException, InterruptedException{
		//create方法返回新建的节点的完整路径
		path=zk.create("/lock/"+name+"-", new byte[0], Ids.OPEN_ACL_UNSAFE,CreateMode.EPHEMERAL_SEQUENTIAL);
		int min;
		while(true){
			synchronized(mutex){
				List<String> list=zk.getChildren("/lock", false);
				min=minSeq(list);
				//如果刚建的节点是根节点的所有子节点中序号最小的,则获得了锁,可以返回true
				if(min==Integer.parseInt(path.substring(14))){
					return true;
				}else{
					mutex.wait();		//等待事件(新建节点或删除节点)发生
					while(true){
						Stat s=zk.exists("/lock/"+name+"-"+min, true);		//查看序号最小的子节点还在不在
						if(s!=null)		//如果还在,则继续等待事件发生
							mutex.wait();
						else			//如果不在,则跳外层循环中,查看新的最小序号的子节点是谁
							break;
					}
				}
			}
		}
	}
	
	boolean releaseLock() throws KeeperException, InterruptedException{
		if(path!=null){
			zk.delete(path, -1);
			path=null;
		}
		return true;
	}
	
	public static void main(String []args) throws KeeperException, InterruptedException{
		Locks lock1=new Locks("localhost:2181");
		if(lock1.getLock()){
			System.out.println("T1 Get lock at "+System.currentTimeMillis());
			for(int i=0;i<1000;++i)
				Thread.sleep(5000);
			lock1.releaseLock();
		}
		Locks lock2=new Locks("localhost:2181");
		if(lock2.getLock()){
			System.out.println("T2 Get lock at "+System.currentTimeMillis());
			lock2.releaseLock();
		}
	}

}

读锁(共享锁)和写锁(排斥锁)并存的情况跟单独只有排斥锁的情况有几点不同:

1.当一个线程想施加读锁时就新建一个节点"/root/read-xxxxxx",施加写锁时就新建一个节点"/root/write-xxxxxx";

2.欲施加读锁的线程查看"/root"下有没有“write"开头的节点,如果没有则直接获得读锁;如果有,但是"write"节点的序号比自己刚才创建的"read"节点的序号要大说明是先施加的读锁后施加的写锁,所以依然获得读锁;else,在序号最小的"write"节点上调用exists,等待它被删除。

posted on 2012-06-05 09:56  高性能golang  阅读(31511)  评论(1编辑  收藏  举报