先提供几个链接
Dijkstra的计算过程就是在维护一张表,形如:
v | known | d | p |
v1 | T | 0 | 0 |
v2 | F | 2 | v1 |
v3 | F | 3 | v4 |
v4 | T | 1 | v1 |
v5 | F | 3 | v4 |
v6 | F | 9 | v4 |
v7 | F | 5 | v4 |
每一次循环要从d中找出最小者,于是PairHeap、FibHeap、BinaryHeap等等就派上用场了。本文我们采用PariHeap,至于为什么请看链接3。当需要更改(减小)d的值时,需要从PairHeap上找到相应的节点再执行DecreaseKey操作,于是我在链接2的基础之上为PairHeap增加了Find操作。
base.h
#ifndef _BASE_H #define _BASE_H #include<stdio.h> #include<stdlib.h> #include<string.h> #define VERTEXNUM 7 #define FALSE (0) #define TRUE (1) #define MAXSIBLINGS ((VERTEXNUM)+1) typedef int BOOL; typedef double ValueType; typedef struct { int vindex; ValueType dist; } Item; #endif
list.h
#ifndef _LIST_H #define _LIST_H #include"base.h" /*单向链表节点*/ typedef struct ltnode { Item item; struct ltnode *next; } LTNode; /*单向链表定义*/ typedef struct linkedList { LTNode *head; int size; } *LinkedList; /*创建并初始化单向链表*/ BOOL Initialize_L(LinkedList * const llh); /*确定一个单向链表是否为空*/ BOOL IsEmpty_L(const LinkedList * const llh); /*向单向链表末尾添加一个元素*/ BOOL Insert_L(const LinkedList * const lln, const Item item); /*释放单向链表占用的空间*/ void Release_L(LinkedList * const llh); #endif
list.c
#include"list.h" static LTNode *makeNode(const Item item) { LTNode *newNode; newNode = (LTNode *) malloc(sizeof(struct ltnode)); newNode->item = item; newNode->next = NULL; return newNode; } static void releaseNode(LTNode * const p) { if (p != NULL) { releaseNode(p->next); free(p); } } /*创建并初始化单向链表*/ BOOL Initialize_L(LinkedList * const llh) { (*llh) = (struct linkedList *) malloc(sizeof(struct linkedList)); (*llh)->head = NULL; (*llh)->size = 0; return TRUE; } /*确定一个单向链表是否为空*/ BOOL IsEmpty_L(const LinkedList * const llh) { if ((*llh)->size == 0) return TRUE; else return FALSE; } /*向单向链表头部添加一个元素*/ BOOL Insert_L(const LinkedList * const llh, const Item item) { LTNode *newNode = makeNode(item); if ((*llh)->size == 0) (*llh)->head = newNode; else { newNode->next = (*llh)->head; (*llh)->head = newNode; } (*llh)->size++; return TRUE; } /*释放单向链表占用的空间*/ void Release_L(LinkedList * const llh) { releaseNode((*llh)->head); free(*llh); }
pairheap.h
#ifndef _PAIRHEAP_H #define _PAIRHEAP_H #include"base.h" typedef struct phnode { Item item; struct phnode *left, *previous, *nextSibling; } PHNode; typedef struct pairingHeap { PHNode *root; int current; } *PairingHeap; /*创建并初始化配对堆*/ BOOL Initialize_P(PairingHeap * const pph); /*确定一个配对堆是否为空*/ BOOL IsEmpty_P(const PairingHeap * const pph); /*向配对堆中插入一个数据为指定数据的结点.localizer用来传递回新节点的地址*/ BOOL Insert_P(const PairingHeap * const pph, const Item item); /*在配对堆上查找数据点*/ PHNode* Find_P(const PairingHeap * const pph, const Item item); /*将配对堆中指定节点的数据降低delta*/ BOOL DecreaseKey_P(const PairingHeap * const pph, PHNode * const position, const ValueType delta); /*删除配对堆中数据域最小的节点,并通过pmin将其携带回调用该函数的函数*/ BOOL DeleteMin_P(const PairingHeap * const pph, Item * const pmin); /*打印堆*/ void Print_P(const PairingHeap * const pph); /*释放配对堆占用的空间*/ void Release_P(PairingHeap * const pph); #endif
pairheap.c
#include"pairheap.h" /*全局变量声明*/ static PHNode *NullNode = NULL; /*局部函数声明*/ static PHNode *compareAndLink_P(PHNode * const first, PHNode * const second); static PHNode *makeNode_P(const Item item); static PHNode *combineSiblings_P(PHNode * firstSibling); static void release_P(PHNode * const pn); static PHNode *find(PHNode * const root, const Item item); static void printNode(const PHNode * const root); /*局部函数定义*/ static PHNode *compareAndLink_P(PHNode * const first, PHNode * const second) { if (second == NullNode) return first; if (second->item.dist < first->item.dist) { /*把first作为second的最左子孩子 */ second->previous = first->previous; first->previous = second; first->nextSibling = second->left; first->nextSibling->previous = first; second->left = first; return second; } else { /*把second作为first的最左孩子 */ second->previous = first; first->nextSibling = second->nextSibling; first->nextSibling->previous = first; second->nextSibling = first->left; second->nextSibling->previous = second; first->left = second; return first; } } static PHNode *makeNode_P(const Item item) { PHNode *newNode; newNode = (PHNode *) malloc(sizeof(PHNode)); if (NULL == newNode) return NULL; newNode->item = item; newNode->left = newNode->nextSibling = newNode->previous = NullNode; return newNode; } static PHNode *combineSiblings_P(PHNode * firstSibling) { static PHNode *treeArray[MAXSIBLINGS]; /*treeArray是个一维数组,每个元素是Node*类型。静态成员在编译时就要初始化,所以数组长度必须是已知的。给treeArray分配一个足够大的长度,再定义为静态的(全局生命周期),每次调用函数时都使用这一个treeArray,省去过多的重复初始化 */ int i, j, numSiblings; /*如果只有一个孩子,则直接返回它 */ if (firstSibling->nextSibling == NullNode) return firstSibling; /*把所有兄弟放在treeArray中 */ for (numSiblings = 0; firstSibling != NullNode; numSiblings++) { treeArray[numSiblings] = firstSibling; /*打断双向链表中每个节点向后的指针 */ firstSibling->previous->nextSibling = NullNode; firstSibling = firstSibling->nextSibling; } treeArray[numSiblings] = NullNode; //一定要把最后一个设为NullNode,因为treeArray的总长度为MAXSIBLINGS,NullNode之前的才是有效元素 /*从左向右两两合并子树 */ //printf("第一趟合并: "); for (i = 0; i + 1 < numSiblings; i += 2){ treeArray[i] = compareAndLink_P(treeArray[i], treeArray[i + 1]); //printf("一次"); //printNode(treeArray[i]); } j = i - 2; if (j == numSiblings - 3){ /*兄弟有奇数个 */ treeArray[j] = compareAndLink_P(treeArray[j], treeArray[j + 2]); //printf("合并最一个奇数项"); //printNode(treeArray[j]); } /*进行第二趟合并 */ /*从右向左逐个合并 */ //printf("第二趟合并: "); while (j >= 2) { treeArray[j - 2] = compareAndLink_P(treeArray[j - 2], treeArray[j]); //printf("一次"); //printNode(treeArray[j-2]); j -= 2; } return treeArray[0]; } static void release_P(PHNode * const pn) { if (pn != NullNode) { release_P(pn->left); release_P(pn->nextSibling); free(pn); } } static PHNode *find(PHNode * const root, const Item item) { //printf("开始查找vindex=%d\tdist=%d\n",root->item.vindex,(int)root->item.dist); if(root==NullNode) return NullNode; else if(root->item.vindex==item.vindex) return root; else if(item.dist<root->item.dist) return find(root->nextSibling,item); else{ PHNode *rect; return ((rect=find(root->nextSibling,item))==NullNode)?find(root->left,item):rect;/*先搜兄弟节点;如果找不到,再搜孩子节点;如果还找不到则返回NullNode*/ } } static void printNode(const PHNode * const root) { if(root==NullNode){ printf("\t"); return; } else{ printf("%d(%d)\t",root->item.vindex,(int)root->item.dist); printf("%d's next:",root->item.vindex);printNode(root->nextSibling); printf("%d's left:",root->item.vindex);printNode(root->left); } } /*************************************接口函数定义********************************/ BOOL Initialize_P(PairingHeap * const pph) { if (NullNode == NULL) { NullNode = (PHNode *) malloc(sizeof(PHNode)); if (NullNode == NULL) { puts("Out of space."); return FALSE; } *pph = (struct pairingHeap *)malloc(sizeof(struct pairingHeap)); if (*pph == NULL) { puts("Out of space"); free(NullNode); NullNode == NULL; return FALSE; } NullNode->left = NullNode->previous = NullNode->nextSibling = NullNode; (*pph)->root = NullNode; (*pph)->current = 0; } return TRUE; } BOOL IsEmpty_P(const PairingHeap * const pph) { switch ((*pph)->current) { case 0: return TRUE; default: return FALSE; } } BOOL Insert_P(const PairingHeap * const pph, const Item item) { PHNode *newNode; newNode = makeNode_P(item); if (newNode == NULL) { puts("out of space."); return FALSE; } //*localizer = newNode; if (IsEmpty_P(pph) == TRUE) (*pph)->root = newNode; else (*pph)->root = compareAndLink_P((*pph)->root, newNode); (*pph)->current++; return TRUE; } PHNode *Find_P(const PairingHeap * const pph, const Item item) { //printf("调用Find_P\n"); PHNode * rect=find((*pph)->root,item); if(rect==NullNode) return NULL; else{ return rect; } } BOOL DecreaseKey_P(const PairingHeap * const pph, PHNode * const position, const ValueType delta) { if (delta <= 0) return FALSE; //printf("要把%d降低%d\n",position->item.vindex,(int)delta); position->item.dist -= delta; //printf("降低节点值以后:vindex=%d\tdist=%d\n",position->item.vindex,(int)position->item.dist); if (position == (*pph)->root) return TRUE; /*如果减小的是根节点的值,可以直接返回 */ /*把position从堆上(双向链表中)取下来 */ position->nextSibling->previous = position->previous; if (position->previous->left == position) /*position是最左孩子 */ position->previous->left = position->nextSibling; else position->previous->nextSibling = position->nextSibling; position->nextSibling = NullNode; /*再把position合并到堆的根节点上去*/ (*pph) -> root = compareAndLink_P ((*pph) -> root, position) ; return TRUE; } BOOL DeleteMin_P(const PairingHeap * pph, Item * const pmin) { PHNode *newRoot; if (IsEmpty_P(pph)) return FALSE; else { newRoot = NullNode; *pmin = (*pph)->root->item; if ((*pph)->root->left != NullNode) newRoot = combineSiblings_P((*pph)->root->left); free((*pph)->root); (*pph)->root = newRoot; (*pph)->current--; return TRUE; } } void Print_P(const PairingHeap * const pph) { if((*pph)->root==NullNode) return; else printNode((*pph)->root); printf("\n"); } void Release_P(PairingHeap * const pph) { release_P((*pph)->root); free(*pph); free(NullNode); NullNode = NULL; }
dijkstra.c
#include"list.h" #include"pairheap.h" #include<time.h> #include<limits.h> typedef struct { int vindex; BOOL known; ValueType dist; int preindex; }TableLine; typedef struct { int vindex; LinkedList neighbours; } Adjancent; char *vertexName[] = { "V1", "V2", "V3", "V4", "V5", "V6", "V7" }; void InitResultTable(TableLine resultTable[],int len){ int i; for(i=0;i<len;i++){ resultTable[i].vindex=i; resultTable[i].known=FALSE; resultTable[i].dist=INT_MAX; resultTable[i].preindex=-1; } } /*根据最终的TableLine打印到各节点的最短路径*/ void printShortWay(TableLine resultTable[],int len){ int i; for(i=0;i<len;i++){ printf("%s: ",vertexName[resultTable[i].vindex]); double way=resultTable[i].dist; int curline=i; do{ int p=resultTable[curline].preindex; if(p!=-1) printf("%s\t",vertexName[p]); //else //printf("END\t"); }while((curline=resultTable[curline].preindex)!=-1); printf("总路程:%d\n",(int)way); } } /*初始化带权有向图*/ void InitGraph(Adjancent **graph) { LinkedList *list0;list0=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list0); Item item1;item1.vindex=1;item1.dist=2;Insert_L(list0, item1); Item item2;item2.vindex=3;item2.dist=1;Insert_L(list0, item2); Adjancent *adj0;adj0=(Adjancent *)malloc(sizeof(Adjancent));adj0->vindex = 0;adj0->neighbours = *list0;graph[0]=adj0; LinkedList *list1;list1=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list1); Item item3;item3.vindex=3;item3.dist=3;Insert_L(list1, item3); Item item4;item4.vindex=4;item4.dist=10;Insert_L(list1, item4); Adjancent *adj1;adj1=(Adjancent *)malloc(sizeof(Adjancent));adj1->vindex = 1;adj1->neighbours = *list1;graph[1]=adj1; LinkedList *list2;list2=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list2); Item item5;item5.vindex=0;item5.dist=4;Insert_L(list2, item5); Item item6;item6.vindex=5;item6.dist=5;Insert_L(list2, item6); Adjancent *adj2;adj2=(Adjancent *)malloc(sizeof(Adjancent));adj2->vindex = 2;adj2->neighbours = *list2;graph[2]=adj2; LinkedList *list3;list3=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list3); Item item7;item7.vindex=2;item7.dist=2;Insert_L(list3, item7); Item item8;item8.vindex=4;item8.dist=2;Insert_L(list3, item8); Item item9;item9.vindex=5;item9.dist=8;Insert_L(list3, item9); Item item10;item10.vindex=6;item10.dist=4;Insert_L(list3, item10); Adjancent *adj3;adj3=(Adjancent *)malloc(sizeof(Adjancent));adj3->vindex = 3;adj3->neighbours = *list3;graph[3]=adj3; LinkedList *list4;list4=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list4); Item item11;item11.vindex=6;item11.dist=6;Insert_L(list4, item11); Adjancent *adj4;adj4=(Adjancent *)malloc(sizeof(Adjancent));adj4->vindex = 4;adj4->neighbours = *list4;graph[4]=adj4; LinkedList *list5;list5=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list5); Adjancent *adj5;adj5=(Adjancent *)malloc(sizeof(Adjancent));adj5->vindex = 5;adj5->neighbours = *list5;graph[5]=adj5; LinkedList *list6;list6=(LinkedList *)malloc(sizeof(LinkedList));Initialize_L(list6); Item item12;item12.vindex=5;item12.dist=1;Insert_L(list6, item12); Adjancent *adj6;adj6=(Adjancent *)malloc(sizeof(Adjancent));adj6->vindex = 6;adj6->neighbours = *list6;graph[6]=adj6; } /*以领接表的形式打开带权有向图*/ void printGraph(Adjancent **graph){ int i, j; LTNode *neighbour; for (i = 0; i < VERTEXNUM; i++) { printf("%s\t", vertexName[graph[i]->vindex]); neighbour = graph[i]->neighbours->head; int len = graph[i]->neighbours->size; while (len-- > 0) { printf("%s(%d)\t", vertexName[neighbour->item.vindex], (int)(neighbour->item.dist)); neighbour = neighbour->next; } printf("\n"); } } int main() { Adjancent **graph; graph = (Adjancent **) malloc(sizeof(Adjancent *) * VERTEXNUM); InitGraph(graph); printGraph(graph); TableLine resultTable[VERTEXNUM]; InitResultTable(resultTable,VERTEXNUM); PairingHeap * pph; pph=(PairingHeap *)malloc(sizeof(PairingHeap)); Initialize_P(pph); int startindex=0; /*指定起点*/ resultTable[startindex].dist=0; int i; for(i=0;i<VERTEXNUM;++i){ Item item; item.vindex=i; if(i!=startindex) item.dist=INT_MAX; else item.dist=0; Insert_P(pph,item); } //printf("初始化堆后: "); //Print_P(pph); while(1){ Item *pmin; pmin=(Item*)malloc(sizeof(Item)); if(DeleteMin_P(pph,pmin)==FALSE){ /*从配对堆上取下最小元素*/ break; } //printf("取下最小元素后: "); //Print_P(pph); int index=pmin->vindex; resultTable[index].known=TRUE; double cvw=resultTable[index].dist; LTNode *neighbour= graph[index]->neighbours->head; int len = graph[index]->neighbours->size; while (len-- > 0) { int ind=neighbour->item.vindex; if(resultTable[ind].known==FALSE){ double d=neighbour->item.dist; if(d+cvw<resultTable[ind].dist){ Item fi; fi.vindex=ind; fi.dist=resultTable[ind].dist; PHNode *change=Find_P(pph,fi); if(change==NULL){ fprintf(stderr,"在配对堆上找不到要找的项.vindex=%d\tdist=%d\n",fi.vindex,(int)fi.dist); free(change); exit(1); } //printf("change:vindex=%d\tdist=%d\n",change->item.vindex,(int)change->item.dist); DecreaseKey_P(pph,change,resultTable[ind].dist-d-cvw); //printf("降低元素值后: "); //Print_P(pph); resultTable[ind].dist=d+cvw; resultTable[ind].preindex=index; } } neighbour = neighbour->next; } } printShortWay(resultTable,VERTEXNUM); Release_P(pph); for(i=0;i<VERTEXNUM;++i){ Release_L(&(graph[i]->neighbours)); } return 0; }
本文来自博客园,作者:高性能golang,转载请注明原文链接:https://www.cnblogs.com/zhangchaoyang/articles/2366869.html