Linux进程调度与切换

2016-04-15

张超《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000 

一、分析

进程调度的时机与进程切换

  操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已。对于理解操作系统的工作机制,反而是进程的调度时机与进程的切换机制更为关键。

进程调度的时机:

schedule()是个内核函数,不是内核函数。所以用户态的进程不能直接调用,只能间接调用。内核线程是只有内核态没有用户态的特殊进程。

1.中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();

2.内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;

3.用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。

进程切换:

1.为了控制进程的执行,内核必须有能力挂起正在CPU上执行的进程,并恢复以前挂起的某个进程的执行,这叫做进程切换、任务切换、上下文切换;

2.挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行;

3.进程上下文包含了进程执行需要的所有信息

   I 用户地址空间: 包括程序代码,数据,用户堆栈等   II 控制信息 :进程描述符,内核堆栈等

   III 硬件上下文(注意中断也要保存硬件上下文只是保存的方法不同)

4.schedule()函数选择一个新的进程来运行,并调用context_switch进行上下文的切换,这个宏调用switch_to来进行关键上下文切换

schedule 在/linux-3.18.6/kernel/sched/core.c

2733/*
2734 * __schedule() is the main scheduler function.
2735 *
2736 * The main means of driving the scheduler and thus entering this function are:
2737 *
2738 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2739 *
2740 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2741 *      paths. For example, see arch/x86/entry_64.S.
2742 *
2743 *      To drive preemption between tasks, the scheduler sets the flag in timer
2744 *      interrupt handler scheduler_tick().
2745 *
2746 *   3. Wakeups don't really cause entry into schedule(). They add a
2747 *      task to the run-queue and that's it.
2748 *
2749 *      Now, if the new task added to the run-queue preempts the current
2750 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2751 *      called on the nearest possible occasion:
2752 *
2753 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2754 *
2755 *         - in syscall or exception context, at the next outmost
2756 *           preempt_enable(). (this might be as soon as the wake_up()'s
2757 *           spin_unlock()!)
2758 *
2759 *         - in IRQ context, return from interrupt-handler to
2760 *           preemptible context
2761 *
2762 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2763 *         then at the next:
2764 *
2765 *          - cond_resched() call
2766 *          - explicit schedule() call
2767 *          - return from syscall or exception to user-space
2768 *          - return from interrupt-handler to user-space
2769 */
2770static void __sched __schedule(void)
2771{
2772    struct task_struct *prev, *next;
2773    unsigned long *switch_count;
2774    struct rq *rq;
2775    int cpu;
2776
2777need_resched:
2778    preempt_disable();
2779    cpu = smp_processor_id();
2780    rq = cpu_rq(cpu);
2781    rcu_note_context_switch(cpu);
2782    prev = rq->curr;
2783
2784    schedule_debug(prev);
2785
2786    if (sched_feat(HRTICK))
2787        hrtick_clear(rq);
2788
2789    /*
2790     * Make sure that signal_pending_state()->signal_pending() below
2791     * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2792     * done by the caller to avoid the race with signal_wake_up().
2793     */
2794    smp_mb__before_spinlock();
2795    raw_spin_lock_irq(&rq->lock);
2796
2797    switch_count = &prev->nivcsw;
2798    if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2799        if (unlikely(signal_pending_state(prev->state, prev))) {
2800            prev->state = TASK_RUNNING;
2801        } else {
2802            deactivate_task(rq, prev, DEQUEUE_SLEEP);
2803            prev->on_rq = 0;
2804
2805            /*
2806             * If a worker went to sleep, notify and ask workqueue
2807             * whether it wants to wake up a task to maintain
2808             * concurrency.
2809             */
2810            if (prev->flags & PF_WQ_WORKER) {
2811                struct task_struct *to_wakeup;
2812
2813                to_wakeup = wq_worker_sleeping(prev, cpu);
2814                if (to_wakeup)
2815                    try_to_wake_up_local(to_wakeup);
2816            }
2817        }
2818        switch_count = &prev->nvcsw;
2819    }
2820
2821    if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2822        update_rq_clock(rq);
2823
2824    next = pick_next_task(rq, prev);
2825    clear_tsk_need_resched(prev);
2826    clear_preempt_need_resched();
2827    rq->skip_clock_update = 0;
2828
2829    if (likely(prev != next)) {
2830        rq->nr_switches++;
2831        rq->curr = next;
2832        ++*switch_count;
2833
2834        context_switch(rq, prev, next); /* unlocks the rq */
2835        /*
2836         * The context switch have flipped the stack from under us
2837         * and restored the local variables which were saved when
2838         * this task called schedule() in the past. prev == current
2839         * is still correct, but it can be moved to another cpu/rq.
2840         */
2841        cpu = smp_processor_id();
2842        rq = cpu_rq(cpu);
2843    } else
2844        raw_spin_unlock_irq(&rq->lock);
2845
2846    post_schedule(rq);
2847
2848    sched_preempt_enable_no_resched();
2849    if (need_resched())
2850        goto need_resched;
2851}
schedule

我们看其中的两个,第一是第2824行的next = pick_next_task(rq, prev);  //完成找到下一个进程

第二是第2834行的context_switch(rq, prev, next); /* unlocks the rq */  //完成切换

 

   I next = pick_next_task(rq, prev);//进程调度算法都封装这个函数内部

 pick_next_stack在/linux-3.18.6/kernel/sched/core.c

2694/*
2695 * Pick up the highest-prio task:
2696 */
2697static inline struct task_struct *
2698pick_next_task(struct rq *rq, struct task_struct *prev)
2699{
2700    const struct sched_class *class = &fair_sched_class;
2701    struct task_struct *p;
2702
2703    /*
2704     * Optimization: we know that if all tasks are in
2705     * the fair class we can call that function directly:
2706     */
2707    if (likely(prev->sched_class == class &&
2708           rq->nr_running == rq->cfs.h_nr_running)) {
2709        p = fair_sched_class.pick_next_task(rq, prev);
2710        if (unlikely(p == RETRY_TASK))
2711            goto again;
2712
2713        /* assumes fair_sched_class->next == idle_sched_class */
2714        if (unlikely(!p))
2715            p = idle_sched_class.pick_next_task(rq, prev);
2716
2717        return p;
2718    }
2719
2720again:
2721    for_each_class(class) {
2722        p = class->pick_next_task(rq, prev);
2723        if (p) {
2724            if (unlikely(p == RETRY_TASK))
2725                goto again;
2726            return p;
2727        }
2728    }
2729
2730    BUG(); /* the idle class will always have a runnable task */
2731}
pick_next_stack

 

   II context_switch(rq, prev, next);//进程上下文切换,切换到新的内存和新的寄存器状态

context_switch在 /linux-3.18.6/kernel/sched/core.c

2331/*
2332 * context_switch - switch to the new MM and the new
2333 * thread's register state.
2334 */
2335static inline void
2336context_switch(struct rq *rq, struct task_struct *prev,
2337           struct task_struct *next)
2338{
2339    struct mm_struct *mm, *oldmm;
2340
2341    prepare_task_switch(rq, prev, next);
2342
2343    mm = next->mm;
2344    oldmm = prev->active_mm;
2345    /*
2346     * For paravirt, this is coupled with an exit in switch_to to
2347     * combine the page table reload and the switch backend into
2348     * one hypercall.
2349     */
2350    arch_start_context_switch(prev);
2351
2352    if (!mm) {
2353        next->active_mm = oldmm;
2354        atomic_inc(&oldmm->mm_count);
2355        enter_lazy_tlb(oldmm, next);
2356    } else
2357        switch_mm(oldmm, mm, next);
2358
2359    if (!prev->mm) {
2360        prev->active_mm = NULL;
2361        rq->prev_mm = oldmm;
2362    }
2363    /*
2364     * Since the runqueue lock will be released by the next
2365     * task (which is an invalid locking op but in the case
2366     * of the scheduler it's an obvious special-case), so we
2367     * do an early lockdep release here:
2368     */
2369    spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2370
2371    context_tracking_task_switch(prev, next);
2372    /* Here we just switch the register state and the stack. */
2373    switch_to(prev, next, prev);
2374
2375    barrier();
2376    /*
2377     * this_rq must be evaluated again because prev may have moved
2378     * CPUs since it called schedule(), thus the 'rq' on its stack
2379     * frame will be invalid.
2380     */
2381    finish_task_switch(this_rq(), prev);
2382}
context_switch

其中的第2341行的prepare_task_switch(rq, prev, next); //完成切换前的准备工作

第2373行的switch_to(prev, next, prev);  //完成切换

 

   III switch_to利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程

/linux-3.18.6/arch/x86/include/asm/switch_to.h

1#ifndef _ASM_X86_SWITCH_TO_H
2#define _ASM_X86_SWITCH_TO_H
3
4struct task_struct; /* one of the stranger aspects of C forward declarations */
5__visible struct task_struct *__switch_to(struct task_struct *prev,
6                       struct task_struct *next);
7struct tss_struct;
8void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
9              struct tss_struct *tss);
10
11#ifdef CONFIG_X86_32
12
13#ifdef CONFIG_CC_STACKPROTECTOR
14#define __switch_canary                            \
15    "movl %P[task_canary](%[next]), %%ebx\n\t"            \
16    "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
17#define __switch_canary_oparam                        \
18    , [stack_canary] "=m" (stack_canary.canary)
19#define __switch_canary_iparam                        \
20    , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
21#else    /* CC_STACKPROTECTOR */
22#define __switch_canary
23#define __switch_canary_oparam
24#define __switch_canary_iparam
25#endif    /* CC_STACKPROTECTOR */
26
27/*
28 * Saving eflags is important. It switches not only IOPL between tasks,
29 * it also protects other tasks from NT leaking through sysenter etc.
30 */
31#define switch_to(prev, next, last)                    \
32do {                                    \
33    /*                                \
34     * Context-switching clobbers all registers, so we clobber    \
35     * them explicitly, via unused output variables.        \
36     * (EAX and EBP is not listed because EBP is saved/restored    \
37     * explicitly for wchan access and EAX is the return value of    \
38     * __switch_to())                        \
39     */                                \
40    unsigned long ebx, ecx, edx, esi, edi;                \
41                                    \
42    asm volatile("pushfl\n\t"        /* save    flags */    \
43             "pushl %%ebp\n\t"        /* save    EBP   */    \
44             "movl %%esp,%[prev_sp]\n\t"    /* save    ESP   */ \
45             "movl %[next_sp],%%esp\n\t"    /* restore ESP   */ \
46             "movl $1f,%[prev_ip]\n\t"    /* save    EIP   */    \
47             "pushl %[next_ip]\n\t"    /* restore EIP   */    \
48             __switch_canary                    \
49             "jmp __switch_to\n"    /* regparm call  */    \
50             "1:\t"                        \
51             "popl %%ebp\n\t"        /* restore EBP   */    \
52             "popfl\n"            /* restore flags */    \
53                                    \
54             /* output parameters */                \
55             : [prev_sp] "=m" (prev->thread.sp),        \
56               [prev_ip] "=m" (prev->thread.ip),        \
57               "=a" (last),                    \
58                                    \
59               /* clobbered output registers: */        \
60               "=b" (ebx), "=c" (ecx), "=d" (edx),        \
61               "=S" (esi), "=D" (edi)                \
62                                           \
63               __switch_canary_oparam                \
64                                    \
65               /* input parameters: */                \
66             : [next_sp]  "m" (next->thread.sp),        \
67               [next_ip]  "m" (next->thread.ip),        \
68                                           \
69               /* regparm parameters for __switch_to(): */    \
70               [prev]     "a" (prev),                \
71               [next]     "d" (next)                \
72                                    \
73               __switch_canary_iparam                \
74                                    \
75             : /* reloaded segment registers */            \
76            "memory");                    \
77} while (0)
78
79#else /* CONFIG_X86_32 */
80
81/* frame pointer must be last for get_wchan */
82#define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
83#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
84
85#define __EXTRA_CLOBBER  \
86    , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
87      "r12", "r13", "r14", "r15"
88
89#ifdef CONFIG_CC_STACKPROTECTOR
90#define __switch_canary                              \
91    "movq %P[task_canary](%%rsi),%%r8\n\t"                  \
92    "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
93#define __switch_canary_oparam                          \
94    , [gs_canary] "=m" (irq_stack_union.stack_canary)
95#define __switch_canary_iparam                          \
96    , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
97#else    /* CC_STACKPROTECTOR */
98#define __switch_canary
99#define __switch_canary_oparam
100#define __switch_canary_iparam
101#endif    /* CC_STACKPROTECTOR */
102
103/* Save restore flags to clear handle leaking NT */
104#define switch_to(prev, next, last) \
105    asm volatile(SAVE_CONTEXT                      \
106         "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */      \
107         "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */      \
108         "call __switch_to\n\t"                      \
109         "movq "__percpu_arg([current_task])",%%rsi\n\t"          \
110         __switch_canary                          \
111         "movq %P[thread_info](%%rsi),%%r8\n\t"              \
112         "movq %%rax,%%rdi\n\t"                       \
113         "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"          \
114         "jnz   ret_from_fork\n\t"                      \
115         RESTORE_CONTEXT                          \
116         : "=a" (last)                            \
117           __switch_canary_oparam                      \
118         : [next] "S" (next), [prev] "D" (prev),              \
119           [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
120           [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
121           [_tif_fork] "i" (_TIF_FORK),                    \
122           [thread_info] "i" (offsetof(struct task_struct, stack)),   \
123           [current_task] "m" (current_task)              \
124           __switch_canary_iparam                      \
125         : "memory", "cc" __EXTRA_CLOBBER)
126
127#endif /* CONFIG_X86_32 */
128
129#endif /* _ASM_X86_SWITCH_TO_H */
130
switch_to

完成进程切换

 二、分析进程切换:我们用switch_to中的部分代码分析

27/*
28 * Saving eflags is important. It switches not only IOPL between tasks,
29 * it also protects other tasks from NT leaking through sysenter etc.
30 */
31#define switch_to(prev, next, last)                    \
32do {                                    \
33    /*                                \
34     * Context-switching clobbers all registers, so we clobber    \
35     * them explicitly, via unused output variables.        \
36     * (EAX and EBP is not listed because EBP is saved/restored    \
37     * explicitly for wchan access and EAX is the return value of    \
38     * __switch_to())                        \
39     */                                \
40    unsigned long ebx, ecx, edx, esi, edi;                \
41                                    \
42    asm volatile("pushfl\n\t"        /* save    flags */    \
43             "pushl %%ebp\n\t"        /* save    EBP   */    \
44             "movl %%esp,%[prev_sp]\n\t"    /* save    ESP   */ \
45             "movl %[next_sp],%%esp\n\t"    /* restore ESP   */ \
46             "movl $1f,%[prev_ip]\n\t"    /* save    EIP   */    \
47             "pushl %[next_ip]\n\t"    /* restore EIP   */    \
48             __switch_canary                    \
49             "jmp __switch_to\n"    /* regparm call  */    \
50             "1:\t"                        \
51             "popl %%ebp\n\t"        /* restore EBP   */    \
52             "popfl\n"            /* restore flags */    \
53                                    \
54             /* output parameters */                \
55             : [prev_sp] "=m" (prev->thread.sp),        \
56               [prev_ip] "=m" (prev->thread.ip),        \
57               "=a" (last),                    \
58                                    \
59               /* clobbered output registers: */        \
60               "=b" (ebx), "=c" (ecx), "=d" (edx),        \
61               "=S" (esi), "=D" (edi)                \
62                                           \
63               __switch_canary_oparam                \
64                                    \
65               /* input parameters: */                \
66             : [next_sp]  "m" (next->thread.sp),        \
67               [next_ip]  "m" (next->thread.ip),        \
68                                           \
69               /* regparm parameters for __switch_to(): */    \
70               [prev]     "a" (prev),                \
71               [next]     "d" (next)                \
72                                    \
73               __switch_canary_iparam                \
74                                    \
75             : /* reloaded segment registers */            \
76            "memory");                    \
77} while (0)

利用了prev和next两个参数:prev指向当前进程,当前进程用X表示。next指向被调度的进程,即下一个进程,用Y表示。至于如何实现调度,看pick_next_task。

看第42行:把flags压入到当前进程X的栈里面,保存flags。

看第43行:把当前的ebp压入当前进程X的栈里,保存ebp。

看第44行:把当前的esp保存到当前进程X的thread.sp里面。其中[prev_sp]是个标识,他在第55行,代替的是prev->thread.sp。

看第45行:把下一个进行Y的thread.sp赋值给esp,这一步实现把本来指向X的栈指针esp,现在指向了Y。其中[next_sp]如上所述,在第66行。

看第46行:把50行的位置存到X进程的thread_ip里面,保存eip。下一次可以从50行开始执行。其中[prev_ip]如上所述,在第56行。

看第47行:把下一个进程Y的threat.ip压入Y进程的栈里面。其中[next_ip]如上所示,在第67行。

看第49行:跳转到__swap_to

看第51行:Y进程里面出栈操作,放到ebp里面。

看第52行:把Y进程里面的出栈,弹出flags

第51,52行正好和第42,43行操作互逆。

 

三、实验:用gdb跟踪分析一个schedule()函数

 

 

四、Linux系统的一般执行过程

最一般情况:正在运行的用户态进程X切换到运行用户态进程Y的过程

  1.正在运行的用户态进程X

  2.发生中断——save cs:eip/esp/eflags(current) to kernel stack,then load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack).

  3. SAVE_ALL //保存现场

  4. 中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换

  5. 标号1之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行)

  6. restore_all   //恢复现场

  7. iret - pop cs:eip/ss:esp/eflags from kernel stack

  8. 继续运行用户态进程Y

几种特殊的情况:

  1. 通过中断处理过程中的调度时机,用户态进程与内核线程之间互相切换和内核线程之间互相切换,与最一般的情况非常类似,只是内核线程运行过程中发生中断没有进程用户态和内核态的转换;

  2. 内核线程主动调用schedule(),只有进程上下文的切换,没有发生中断上下文的切换,与最一般的情况略简略;

  3. 创建子进程的系统调用在子进程中的执行起点及返回用户态,如fork;

  4. 加载一个新的可执行程序后返回到用户态的情况,如execve;

 

posted @ 2016-04-15 22:33  秦时明月0515  阅读(588)  评论(0编辑  收藏  举报