爬虫二
自动登陆抽屉并点赞
### 1、首先登陆任何页面,获取cookie i1 = requests.get(url= "http://dig.chouti.com/help/service") ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权 i2 = requests.post( url= "http://dig.chouti.com/login", data= { 'phone': "86手机号", 'password': "密码", 'oneMonth': "" }, cookies = i1.cookies.get_dict() ) ### 3、点赞(只需要携带已经被授权的gpsd即可) gpsd = i1.cookies.get_dict()['gpsd'] i3 = requests.post( url="http://dig.chouti.com/link/vote?linksId=8589523", cookies={'gpsd': gpsd} ) print(i3.text)
股票爬取
import requests from bs4 import BeautifulSoup import traceback import re def getHTMLText(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" def getStockList(lst, stockURL): html = getHTMLText(stockURL) soup = BeautifulSoup(html, 'html.parser') a = soup.find_all('a') for i in a: try: href = i.attrs['href'] lst.append(re.findall(r"[s][hz]\d{6}", href)[0]) except: continue def getStockInfo(lst, stockURL, fpath): for stock in lst: url = stockURL + stock + ".html" html = getHTMLText(url) try: if html=="": continue infoDict = {} soup = BeautifulSoup(html, 'html.parser') stockInfo = soup.find('div',attrs={'class':'stock-bets'}) name = stockInfo.find_all(attrs={'class':'bets-name'})[0] infoDict.update({'股票名称': name.text.split()[0]}) print(infoDict) keyList = stockInfo.find_all('dt') valueList = stockInfo.find_all('dd') for i in range(len(keyList)): key = keyList[i].text val = valueList[i].text infoDict[key] = val with open(fpath, 'a', encoding='utf-8') as f: f.write(str(infoDict) + '\n' ) except: traceback.print_exc() continue def main(): stock_list_url = 'http://quote.eastmoney.com/stocklist.html' stock_info_url = 'https://gupiao.baidu.com/stock/' output_file = 'D:/BaiduStockInfo.txt' slist=[] getStockList(slist, stock_list_url) getStockInfo(slist, stock_info_url, output_file) main()
Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取