Codeforces 578.C Weakness and Poorness
You are given a sequence of n integers a1, a2, ..., an.
Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.
The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.
The poorness of a segment is defined as the absolute value of sum of the elements of segment.
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.
3
1 2 3
1.000000000000000
4
1 2 3 4
2.000000000000000
10
1 10 2 9 3 8 4 7 5 6
4.500000000000000
For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.
For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
题目大意:找到一个x,使得原序列中的所有数减掉x后的最大的子段和的绝对值最小.
分析:因为最后的答案是一个浮点数,肯定不能用搜索枚举之类的方法做出来.题目中出现两个最值,想到要用二分.答案会随着x的增大减小而波动.不是二分,我也想不出好的数学式子来表示答案,只能三分法了.其实稍微分析一下发现真的满足单峰性.当x足够大时,所有的数都变成负数,x越大答案越大.当x足够小时所有的数都变成正数,x越小答案越小,所以这是一个向下凸的单峰函数.三分即可.
求最大的字段和的绝对值可以先求出一开始的序列的(答案为正的),然后将序列中的所有数取反,再来一次,两个答案取max.
注意精度问题.允许误差6位.(一开始没看到一直TLE......).
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int n; double a[200010],ans,b[200010],c[200010],eps = 3e-12,sum1[200010],sum2[200010]; double C(double x) { double max1 = -100000.0,max2 = -100000.0; sum1[0] = sum2[0] = 0.0; for (int i = 1; i <= n; i++) { b[i] = a[i] - x; c[i] = -b[i]; } for (int i = 1; i <= n; i++) { sum1[i] = max(sum1[i - 1] + b[i],b[i]); max1 = max(max1,sum1[i]); sum2[i] = max(sum2[i - 1] + c[i],c[i]); max2 = max(max2,sum2[i]); } return max(max1,max2); } int main() { scanf("%d",&n); for (int i = 1; i <= n; i++) scanf("%lf",&a[i]); if (n == 1) printf("%.15lf\n",0); else { double L = -20000.0,R = 20000.0; while (R - L > eps) { double mid1 = L + (R - L) / 3.0,mid2 = R - (R - L) / 3.0; if (C(mid1) < C(mid2)) { ans = mid1; R = mid2; } else { ans = mid2; L = mid1; } } printf("%.15lf\n",C(ans)); } return 0; }