python数据结构之图深度优先和广度优先

首先有一个概念:回溯

  回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

深度优先算法:

(1)访问初始顶点v并标记顶点v已访问。
(2)查找顶点v的第一个邻接顶点w。
(3)若顶点v的邻接顶点w存在,则继续执行;否则回溯到v,再找v的另外一个未访问过的邻接点。
(4)若顶点w尚未被访问,则访问顶点w并标记顶点w为已访问。
(5)继续查找顶点w的下一个邻接顶点wi,如果v取值wi转到步骤(3)。直到连通图中所有顶点全部访问过为止。

广度优先算法:

(1)顶点v入队列。
(2)当队列非空时则继续执行,否则算法结束。
(3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。
(4)查找顶点v的第一个邻接顶点col。
(5)若v的邻接顶点col未被访问过的,则col入队列。
(6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。

代码:

#!/usr/bin/python
# -*- coding: utf-8 -*-

class Graph(object):

    def __init__(self,*args,**kwargs):
        self.node_neighbors = {}
        self.visited = {}

    def add_nodes(self,nodelist):

        for node in nodelist:
            self.add_node(node)

    def add_node(self,node):
        if not node in self.nodes():
            self.node_neighbors[node] = []

    def add_edge(self,edge):
        u,v = edge
        if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]):
            self.node_neighbors[u].append(v)

            if(u!=v):
                self.node_neighbors[v].append(u)

    def nodes(self):
        return self.node_neighbors.keys()

    def depth_first_search(self,root=None):
        order = []
        def dfs(node):
            self.visited[node] = True
            order.append(node)
            for n in self.node_neighbors[node]:
                if not n in self.visited:
                    dfs(n)


        if root:
            dfs(root)

        for node in self.nodes():
            if not node in self.visited:
                dfs(node)

        print order
        return order

    def breadth_first_search(self,root=None):
        queue = []
        order = []
        def bfs():
            while len(queue)> 0:
                node  = queue.pop(0)

                self.visited[node] = True
                for n in self.node_neighbors[node]:
                    if (not n in self.visited) and (not n in queue):
                        queue.append(n)
                        order.append(n)

        if root:
            queue.append(root)
            order.append(root)
            bfs()

        for node in self.nodes():
            if not node in self.visited:
                queue.append(node)
                order.append(node)
                bfs()
        print order

        return order


if __name__ == '__main__':
    g = Graph()
g.add_nodes([i+1 for i in range(8)])
g.add_edge((1, 2))
g.add_edge((1, 3))
g.add_edge((2, 4))
g.add_edge((2, 5))
g.add_edge((4, 8))
g.add_edge((5, 8))
g.add_edge((3, 6))
g.add_edge((3, 7))
g.add_edge((6, 7))
print "nodes:", g.nodes()

order = g.breadth_first_search(1)
order = g.depth_first_search(1)

结果:

nodes: [1, 2, 3, 4, 5, 6, 7, 8]

广度优先:
[1, 2, 3, 4, 5, 6, 7, 8]

深度优先:

[1, 2, 4, 8, 5, 3, 6, 7]

posted @ 2013-11-08 17:40  yupeng  阅读(29228)  评论(1编辑  收藏  举报