hdu4920 Matrix multiplication 模3矩阵乘法
Matrix multiplicationTime Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 568 Accepted Submission(s): 225Problem Description
Given two matrices A and B of size n×n, find the product of them.
bobo hates big integers. So you are only asked to find the result modulo 3. Input
The input consists of several tests. For each tests:
The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109). Output
For each tests:
Print n lines. Each of them contain n integers -- the matrix A×B in similar format. Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
Sample Output
0
0 1
2 1
Author
Xiaoxu Guo (ftiasch)
Source
Recommend
|
2014多校5的最水的题,我没做出来,怕了。
题意:给出两个n*n的矩阵A和B,求A*B结果矩阵,元素都模3,n<=800。
题解:矩阵乘法加剪枝(?)。
800*800的矩阵,多组数据,直接算是会超时得飞起来的,只有考虑模3的特殊性。
读入后每个元素模3,得到的矩阵里全是0,1,2,随机数据的话有三分之一是零,所以我们的矩阵乘法要用k i j的循环嵌套顺序,第二层里面发现A[i][k]==0时就continue,直接少一维,也就是1/3概率少一维。这个是这题最关键的一步,没想到这步的话,其他再怎么优化也没用(我们试过了……)。但没有这一步,只是改成kij的循环,也能过,因为kij循环时,最内层的C[i][j]+=A[i][k]*B[k][j]中的A[i][k]是不变的,能存在缓存中,比ijk每次都从内存或者更慢的缓存中取数快多了,我都怕。
另外运算时可以使用cal[i][j][k]提前计算好((i*j)+k)%3,矩阵乘法的时候直接用这个结果。
------------------------------其他------------------------------------
顺便说个笑话:为什么Dijkstra没发明Floyd算法?因为他是ijk不是kij……
比赛的时候我们做这题优化得飞起来,读入输出优化,gets按字符串读一行来处理,输出用putchar,乘法、取余运算用上面说的那步省掉,输出不用'0'+C[i][j]而用数组存好ch[0]='0'这样输出,就差用fread一次读多行了……可是就是TLE,因为我们没想到最关键那步……
代码:
View Code
裸奔代码(仅仅是改成kij,其他什么读入啊乘法运算啊全部没有优化,也能A):
1 //#pragma comment(linker, "/STACK:102400000,102400000") 2 3 #include<cstdio> 4 #include<cmath> 5 #include<iostream> 6 #include<cstring> 7 #include<algorithm> 8 #include<cmath> 9 #include<map> 10 #include<set> 11 #include<stack> 12 #include<queue> 13 using namespace std; 14 #define ll __int64 15 #define usint unsigned int 16 #define mz(array) memset(array, 0, sizeof(array)) 17 #define minf(array) memset(array, 0x3f, sizeof(array)) 18 #define REP(i,n) for(int i=0;i<(n);i++) 19 #define FOR(i,x,n) for(int i=(x);i<=(n);i++) 20 #define RD(x) scanf("%d",&x) 21 #define RD2(x,y) scanf("%d%d",&x,&y) 22 #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) 23 #define WN(x) printf("%d\n",x); 24 #define RE freopen("D.in","r",stdin) 25 #define WE freopen("1.out","w",stdout) 26 int n; 27 28 const int maxn=800; 29 int A[maxn][maxn],B[maxn][maxn],C[maxn][maxn]; 30 int main() { 31 int i,j,k; 32 while(scanf("%d",&n)!=EOF) { 33 for(i=0; i<n; i++) 34 for(j=0; j<n; j++) { 35 scanf("%d",&A[i][j]); 36 A[i][j]%=3; 37 } 38 for(i=0; i<n; i++) 39 for(j=0; j<n; j++) { 40 scanf("%d",&B[i][j]); 41 B[i][j]%=3; 42 } 43 mz(C); 44 for(k=0; k<n; k++) 45 for(i=0; i<n; i++) { 46 for(j=0; j<n; j++) { 47 C[i][j]+=A[i][k]*B[k][j]; 48 } 49 } 50 for(i=0; i<n; i++) { 51 for(j=0; j<n-1; j++) { 52 putchar(C[i][j]%3+'0'); 53 putchar(' '); 54 } 55 putchar(C[i][n-1]%3+'0'); 56 puts(""); 57 } 58 } 59 return 0; 60 }