Hive伪分布式下安装
本安装过程只作为个人笔记用,非标准教程,请酌情COPY。:-D
Hive下载
下载之前,需先查看兼容的Hadoop版本,并安装hadoop,参考 http://www.cnblogs.com/yongjian/p/6552647.html
因为自己安装的是hadoop2.7.0,所以就直接下载了Hive2.0.1版本安装。
下载连接apache-hive-2.0.1-bin.tar.gz
Hive安装
注:由于Hive运行在Hadoop上,每个Hive发布的版本都可以和多个Hadoop版本共同工作。一般来说,Hive支持Hadoop的新老版本。
1. 解压后hive包位置在 /opt/apache-hive-2.0.1-bin 下。
[root@hadoop001 opt]# tar apache-hive-2.0.1-bin.tar.gz
2. 安装包授权给hadoop用户
[root@hadoop001 opt]# chown hadoop:hadoop -R apache-hive-2.0.1-bin/
3. 切回hadoop用户,并添加hive环境变量
[hadoop@hadoop001 ~]$ vim ~/.bash_profile
添加Hive路径
# User specific environment and startup programs
#java
export JAVA_HOME=/usr/java/jdk1.8.0_40/# hadoop
HADOOP_HOME=/opt/hadoop-2.7.3
HIVE_HOME=/opt/apache-hive-2.0.1-binPATH=$PATH:$HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:JAVA_HOME/bin:$HIVE_HOME/bin
export PATH
应用一下环境变量文件
[hadoop@hadoop001 ~]$ source ~/.bash_profile
4. Hive的元数据
Hive元数据有三种存储方式
- Derby:Hive默认的存储模式,缺点是不可并发调用Hive
- 本地Mysql:单节点存储,数据风险大
- 远程Mysql:需要网络传输
这里采用第二种方式,本地搭建Mysql元数据。
首先是安装Mysql
[hadoop@hadoop001 ~]$ yum -y install mysql-server
完成后配置开机启动
[root@hadoop001 hadoop]# chkconfig mysqld on
启动Mysql
[root@hadoop001 hadoop]# service mysqld start
因为是第一次安装,需要先初始化用户root的密码
[root@hadoop001 hadoop]# mysqladmin -u root password 'hive'
随后登录root用户,输入密码hive
[root@hadoop001 hadoop]# mysql -uroot –p
创建hive用户,密码hive,并创建hive源数据库
mysql> insert into mysql.user(Host,User,Password) values("localhost","hive",password("hive")); Query OK, 1 row affected, 3 warnings (0.00 sec) mysql> create database hive; Query OK, 1 row affected (0.00 sec) mysql> grant all on hive.* to hive@'%' identified by 'hive'; Query OK, 0 rows affected (0.00 sec) mysql> grant all on hive.* to hive@'localhost' identified by 'hive'; Query OK, 0 rows affected (0.00 sec) mysql> grant all on hive.* to hive@'hadoop001' identified by 'hive'; Query OK, 0 rows affected (0.00 sec) mysql> flush privileges; Query OK, 0 rows affected (0.00 sec)
5. 修改Hive配置文件
创建hive临时文件目录并全部授权给hadoop用户
[root@hadoop001 hive]# mkdir -p /tmp/hive//iotmp [root@hadoop001 hive]# chown hadoop:hadoop -R /tmp/hive/
然后生成hive-site.xml
[root@hadoop001 hive]# cp /opt/apache-hive-2.0.1-bin/conf/hive-default.xml.template /opt/apache-hive-2.0.1-bin/conf/hive-site.xml
以下几项需要修改
<property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://hadoop001:3306/hive</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>hive </value> </property> <property> <name>hive.hwi.listen.port</name> <value>3306</value> <description>This is the port the Hive Web Interface will listen on</description> </property> <property> <name>datanucleus.schema.autoCreateAll</name> <value>true</value> <description>creates necessary schema on a startup if one doesn't exist. set this to false, after creating it once</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>Username to use against metastore database</description> </property> <property> <name>hive.exec.local.scratchdir</name> <value>/tmp/hive/iotmp</value> <description>Local scratch space for Hive jobs</description> </property> <property> <name>hive.downloaded.resources.dir</name> <value>/tmp/hive/iotmp</value> <description>Temporary local directory for added resources in the remote file system.</description> </property> <property> <name>hive.querylog.location</name> <value>/home/hdpsrc/hive/iotmp</value> <description>Location of Hive run time structured log file</description> </property>
6. 配置mysql的jdbc驱动
下载mysql的jdbc驱动包,将mysql驱动包copy到 $HIVE_HOME/lib下
[root@hadoop001 lib]# mv /opt/soft/mysql-connector-java-5.1.17.jar /opt/apache-hive-2.0.1-bin/lib/
7.启动hadoop
start-dfs.sh
8. 启动hive,创建测试表
[hadoop@hadoop001 conf]$ hive which: no hbase in (/usr/java/jdk1.8.0_40//bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/hadoop/bin:/opt/hadoop-2.7.3/bin:/opt/hadoop-2.7.3/sbin:JAVA_HOME/bin:/opt/apache-hive-2.0.1-bin/bin) SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/apache-hive-2.0.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Logging initialized using configuration in jar:file:/opt/apache-hive-2.0.1-bin/lib/hive-common-2.0.1.jar!/hive-log4j2.properties Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. hive> show databases; OK default Time taken: 1.079 seconds, Fetched: 1 row(s) hive> create table test(x int); OK Time taken: 0.56 seconds hive> show tables; OK test Time taken: 0.075 seconds, Fetched: 1 row(s)
8. 在mysql中查看新建表test的元数据
[root@hadoop001 apache-hive-2.0.1-bin]# mysql -u root -p mysql> use hive; mysql> show tables; +---------------------------+ | Tables_in_hive | +---------------------------+ | BUCKETING_COLS | | CDS | | COLUMNS_V2 | | DATABASE_PARAMS | | DBS | | FUNCS | | FUNC_RU | | GLOBAL_PRIVS | | PARTITIONS | | PARTITION_KEYS | | PARTITION_KEY_VALS | | PARTITION_PARAMS | | PART_COL_STATS | | ROLES | | SDS | | SD_PARAMS | | SEQUENCE_TABLE | | SERDES | | SERDE_PARAMS | | SKEWED_COL_NAMES | | SKEWED_COL_VALUE_LOC_MAP | | SKEWED_STRING_LIST | | SKEWED_STRING_LIST_VALUES | | SKEWED_VALUES | | SORT_COLS | | TABLE_PARAMS | | TAB_COL_STATS | | TBLS | | TBL_PRIVS | | VERSION | +---------------------------+ 30 rows in set (0.00 sec)
查看TBLS表,可以看到新增的test表的属性信息。
至此,Hive安装完毕。