HDU1003:Max Sum
HDU1003:Max Sum
同51NOD1049
最大连续子段和(存在最大负整数和(-1000))
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 258263 Accepted Submission(s): 61372
Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
题意:最大连续子段和()
注意:存在最大负整数和(-1000)
思路:直接从前向后扫 复杂度 O(n)
/* 最大连续子段和 */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; #define maxn 110000 int n ; int max_sum ; int num[maxn] ; int st1 , st2 ; int result ; int main(){ int t ; scanf("%d" , &t) ; for(int times = 1 ; times <= t ; times ++ ){ scanf("%d" , &n) ; for(int i=1 ; i<= n ; i++){ scanf("%d" , &num[i]) ; } max_sum = -1 ; result = -100000 ; //可能会出现 最大和 为 负数的情况 int k ; for(int i=1 ; i<=n ; i++){ if(max_sum < 0 ){ max_sum = 0 ; k = i ; } max_sum += num[i] ; if(max_sum > result){ // 找到一个较大和 更新值 , result初始值较小 保证存在负数最大和(-1000) result = max_sum ; st1 = k ; st2 = i ; } } printf("Case %d:\n" , times ) ; printf("%d %d %d\n" , result , st1 , st2) ; if(times!=t) printf("\n") ; // 注意格式 } return 0 ; }