Cartographer源码阅读(2):Node和MapBuilder对象
上文提到特别注意map_builder_bridge_.AddTrajectory(x,x),查看其中的代码。两点:
首先是map_builder_.AddTrajectoryBuilder(...),调用了map_builder_对象的方法。其次是sensor_bridges_键值对的赋值。
int MapBuilderBridge::AddTrajectory(const std::unordered_set<std::string>& expected_sensor_ids, const TrajectoryOptions& trajectory_options) { const int trajectory_id = map_builder_.AddTrajectoryBuilder(expected_sensor_ids, trajectory_options.trajectory_builder_options, ::std::bind(&MapBuilderBridge::OnLocalSlamResult, this, ::std::placeholders::_1, ::std::placeholders::_2, ::std::placeholders::_3, ::std::placeholders::_4, ::std::placeholders::_5)); LOG(INFO) << "Added trajectory with ID '" << trajectory_id << "'."; // Make sure there is no trajectory with 'trajectory_id' yet. CHECK_EQ(sensor_bridges_.count(trajectory_id), 0); sensor_bridges_[trajectory_id] = cartographer::common::make_unique<SensorBridge>( trajectory_options.num_subdivisions_per_laser_scan, trajectory_options.tracking_frame, node_options_.lookup_transform_timeout_sec, tf_buffer_, map_builder_.GetTrajectoryBuilder(trajectory_id)); auto emplace_result = trajectory_options_.emplace(trajectory_id, trajectory_options); CHECK(emplace_result.second == true); return trajectory_id; }
其中map_builder_.AddTrajectoryBuilder(...)是Cartographer项目中的代码了。
int MapBuilder::AddTrajectoryBuilder( const std::unordered_set<std::string>& expected_sensor_ids, const proto::TrajectoryBuilderOptions& trajectory_options, LocalSlamResultCallback local_slam_result_callback) { const int trajectory_id = trajectory_builders_.size();//生成trajectory_id if (options_.use_trajectory_builder_3d()) { CHECK(trajectory_options.has_trajectory_builder_3d_options()); trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>( &sensor_collator_, trajectory_id, expected_sensor_ids, common::make_unique<mapping::GlobalTrajectoryBuilder< mapping_3d::LocalTrajectoryBuilder, mapping_3d::proto::LocalTrajectoryBuilderOptions, mapping_3d::PoseGraph>>( trajectory_options.trajectory_builder_3d_options(), trajectory_id, pose_graph_3d_.get(), local_slam_result_callback)));//注意此处的push_back()方法 } else { CHECK(trajectory_options.has_trajectory_builder_2d_options()); trajectory_builders_.push_back(common::make_unique<CollatedTrajectoryBuilder>( &sensor_collator_, trajectory_id, expected_sensor_ids, common::make_unique<mapping::GlobalTrajectoryBuilder< mapping_2d::LocalTrajectoryBuilder, mapping_2d::proto::LocalTrajectoryBuilderOptions, mapping_2d::PoseGraph>>( trajectory_options.trajectory_builder_2d_options(), trajectory_id, pose_graph_2d_.get(), local_slam_result_callback)));//注意此处的push_back()方法 } if (trajectory_options.pure_localization()) { constexpr int kSubmapsToKeep = 3; pose_graph_->AddTrimmer(common::make_unique<PureLocalizationTrimmer>(trajectory_id, kSubmapsToKeep)); } if (trajectory_options.has_initial_trajectory_pose()) { const auto& initial_trajectory_pose = trajectory_options.initial_trajectory_pose(); pose_graph_->SetInitialTrajectoryPose(trajectory_id, initial_trajectory_pose.to_trajectory_id(), transform::ToRigid3(initial_trajectory_pose.relative_pose()), common::FromUniversal(initial_trajectory_pose.timestamp())); } return trajectory_id; }
注意,trajectory_builders_是根据trajectory_id添加的。以后调用的时候根据trajectory_id调用。
2D/3D区分:同时可以看到,这里对2D和3D情况作了区分,根据options_.use_trajectory_builder_3d()确定使用的类型。
在ROS的主循环运行过程中,会不断处理传感器传入的数据。
以IMU数据为例,auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id),根据trajectory_id获取sensor_bridge_ptr。注意这里因为是订阅的其它ROS主题(Topic),所以sensor_id参数是从其他主题传入的。(即当前程序内部有一套主题名称的字符串,订阅了外部主题也有一套名称字符串表示。这样两者通过同样的名称字符串建立了关系)
void Node::HandleImuMessage(const int trajectory_id, const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg) { carto::common::MutexLocker lock(&mutex_); if (!sensor_samplers_.at(trajectory_id).imu_sampler.Pulse()) { return; } auto sensor_bridge_ptr = map_builder_bridge_.sensor_bridge(trajectory_id); auto imu_data_ptr = sensor_bridge_ptr->ToImuData(msg); if (imu_data_ptr != nullptr) { extrapolators_.at(trajectory_id).AddImuData(*imu_data_ptr); } sensor_bridge_ptr->HandleImuMessage(sensor_id, msg); }
最后调用了sensor_bridge_ptr->HandleImuMessage(sensor_id, msg);的代码。这里又通过trajectory_builder_调用了AddSensorData方法,由于之前做为参数传入的是CollatedTrajectoryBuilder,所以实际调用的是CollatedTrajectoryBuilder的AddSensorData方法。
void SensorBridge::HandleImuMessage(const std::string& sensor_id, const sensor_msgs::Imu::ConstPtr& msg) { std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg); if (imu_data != nullptr) { trajectory_builder_->AddSensorData( sensor_id, cartographer::sensor::ImuData{imu_data->time, imu_data->linear_acceleration, imu_data->angular_velocity}); } }
SensorBridge类实现代码,消息转换函数查看msg_conversion.cc文件:
1 SensorBridge::SensorBridge( 2 const int num_subdivisions_per_laser_scan, 3 const std::string& tracking_frame, 4 const double lookup_transform_timeout_sec, tf2_ros::Buffer* const tf_buffer, 5 carto::mapping::TrajectoryBuilderInterface* const trajectory_builder) 6 : num_subdivisions_per_laser_scan_(num_subdivisions_per_laser_scan), 7 tf_bridge_(tracking_frame, lookup_transform_timeout_sec, tf_buffer), 8 trajectory_builder_(trajectory_builder) {} 9 10 std::unique_ptr<::cartographer::sensor::OdometryData> 11 SensorBridge::ToOdometryData(const nav_msgs::Odometry::ConstPtr& msg) { 12 const carto::common::Time time = FromRos(msg->header.stamp); 13 const auto sensor_to_tracking = tf_bridge_.LookupToTracking( 14 time, CheckNoLeadingSlash(msg->child_frame_id)); 15 if (sensor_to_tracking == nullptr) { 16 return nullptr; 17 } 18 return ::cartographer::common::make_unique< 19 ::cartographer::sensor::OdometryData>( 20 ::cartographer::sensor::OdometryData{ 21 time, ToRigid3d(msg->pose.pose) * sensor_to_tracking->inverse()}); 22 } 23 24 void SensorBridge::HandleOdometryMessage( 25 const std::string& sensor_id, const nav_msgs::Odometry::ConstPtr& msg) { 26 std::unique_ptr<::cartographer::sensor::OdometryData> odometry_data = 27 ToOdometryData(msg); 28 if (odometry_data != nullptr) { 29 trajectory_builder_->AddSensorData( 30 sensor_id, cartographer::sensor::OdometryData{odometry_data->time, 31 odometry_data->pose}); 32 } 33 } 34 35 std::unique_ptr<::cartographer::sensor::ImuData> SensorBridge::ToImuData( 36 const sensor_msgs::Imu::ConstPtr& msg) { 37 CHECK_NE(msg->linear_acceleration_covariance[0], -1) 38 << "Your IMU data claims to not contain linear acceleration measurements " 39 "by setting linear_acceleration_covariance[0] to -1. Cartographer " 40 "requires this data to work. See " 41 "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html."; 42 CHECK_NE(msg->angular_velocity_covariance[0], -1) 43 << "Your IMU data claims to not contain angular velocity measurements " 44 "by setting angular_velocity_covariance[0] to -1. Cartographer " 45 "requires this data to work. See " 46 "http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html."; 47 48 const carto::common::Time time = FromRos(msg->header.stamp); 49 const auto sensor_to_tracking = tf_bridge_.LookupToTracking( 50 time, CheckNoLeadingSlash(msg->header.frame_id)); 51 if (sensor_to_tracking == nullptr) { 52 return nullptr; 53 } 54 CHECK(sensor_to_tracking->translation().norm() < 1e-5) 55 << "The IMU frame must be colocated with the tracking frame. " 56 "Transforming linear acceleration into the tracking frame will " 57 "otherwise be imprecise."; 58 return ::cartographer::common::make_unique<::cartographer::sensor::ImuData>( 59 ::cartographer::sensor::ImuData{ 60 time, 61 sensor_to_tracking->rotation() * ToEigen(msg->linear_acceleration), 62 sensor_to_tracking->rotation() * ToEigen(msg->angular_velocity)}); 63 } 64 65 void SensorBridge::HandleImuMessage(const std::string& sensor_id, 66 const sensor_msgs::Imu::ConstPtr& msg) { 67 std::unique_ptr<::cartographer::sensor::ImuData> imu_data = ToImuData(msg); 68 if (imu_data != nullptr) { 69 trajectory_builder_->AddSensorData( 70 sensor_id, cartographer::sensor::ImuData{imu_data->time, 71 imu_data->linear_acceleration, 72 imu_data->angular_velocity}); 73 } 74 } 75 76 void SensorBridge::HandleLaserScanMessage( 77 const std::string& sensor_id, const sensor_msgs::LaserScan::ConstPtr& msg) { 78 ::cartographer::sensor::PointCloudWithIntensities point_cloud; 79 ::cartographer::common::Time time; 80 std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg); 81 HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud); 82 } 83 84 void SensorBridge::HandleMultiEchoLaserScanMessage( 85 const std::string& sensor_id, 86 const sensor_msgs::MultiEchoLaserScan::ConstPtr& msg) { 87 ::cartographer::sensor::PointCloudWithIntensities point_cloud; 88 ::cartographer::common::Time time; 89 std::tie(point_cloud, time) = ToPointCloudWithIntensities(*msg); 90 HandleLaserScan(sensor_id, time, msg->header.frame_id, point_cloud); 91 } 92 93 void SensorBridge::HandlePointCloud2Message( 94 const std::string& sensor_id, 95 const sensor_msgs::PointCloud2::ConstPtr& msg) { 96 pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud; 97 pcl::fromROSMsg(*msg, pcl_point_cloud); 98 carto::sensor::TimedPointCloud point_cloud; 99 for (const auto& point : pcl_point_cloud) { 100 point_cloud.emplace_back(point.x, point.y, point.z, 0.f); 101 } 102 HandleRangefinder(sensor_id, FromRos(msg->header.stamp), msg->header.frame_id, 103 point_cloud); 104 } 105 106 const TfBridge& SensorBridge::tf_bridge() const { return tf_bridge_; } 107 108 void SensorBridge::HandleLaserScan( 109 const std::string& sensor_id, const carto::common::Time time, 110 const std::string& frame_id, 111 const carto::sensor::PointCloudWithIntensities& points) { 112 CHECK_LE(points.points.back()[3], 0); 113 // TODO(gaschler): Use per-point time instead of subdivisions. 114 for (int i = 0; i != num_subdivisions_per_laser_scan_; ++i) { 115 const size_t start_index = 116 points.points.size() * i / num_subdivisions_per_laser_scan_; 117 const size_t end_index = 118 points.points.size() * (i + 1) / num_subdivisions_per_laser_scan_; 119 carto::sensor::TimedPointCloud subdivision( 120 points.points.begin() + start_index, points.points.begin() + end_index); 121 if (start_index == end_index) { 122 continue; 123 } 124 const double time_to_subdivision_end = subdivision.back()[3]; 125 // `subdivision_time` is the end of the measurement so sensor::Collator will 126 // send all other sensor data first. 127 const carto::common::Time subdivision_time = 128 time + carto::common::FromSeconds(time_to_subdivision_end); 129 for (auto& point : subdivision) { 130 point[3] -= time_to_subdivision_end; 131 } 132 CHECK_EQ(subdivision.back()[3], 0); 133 HandleRangefinder(sensor_id, subdivision_time, frame_id, subdivision); 134 } 135 } 136 137 void SensorBridge::HandleRangefinder( 138 const std::string& sensor_id, const carto::common::Time time, 139 const std::string& frame_id, const carto::sensor::TimedPointCloud& ranges) { 140 const auto sensor_to_tracking = 141 tf_bridge_.LookupToTracking(time, CheckNoLeadingSlash(frame_id)); 142 if (sensor_to_tracking != nullptr) { 143 trajectory_builder_->AddSensorData( 144 sensor_id, cartographer::sensor::TimedPointCloudData{ 145 time, sensor_to_tracking->translation().cast<float>(), 146 carto::sensor::TransformTimedPointCloud( 147 ranges, sensor_to_tracking->cast<float>())}); 148 } 149 }
1 ToPointCloudWithIntensities(const sensor_msgs::PointCloud2& message) { 2 PointCloudWithIntensities point_cloud; 3 // We check for intensity field here to avoid run-time warnings if we pass in 4 // a PointCloud2 without intensity. 5 if (PointCloud2HasField(message, "intensity")) { 6 pcl::PointCloud<pcl::PointXYZI> pcl_point_cloud; 7 pcl::fromROSMsg(message, pcl_point_cloud); 8 for (const auto& point : pcl_point_cloud) { 9 point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f); 10 point_cloud.intensities.push_back(point.intensity); 11 } 12 } else { 13 pcl::PointCloud<pcl::PointXYZ> pcl_point_cloud; 14 pcl::fromROSMsg(message, pcl_point_cloud); 15 16 // If we don't have an intensity field, just copy XYZ and fill in 17 // 1.0. 18 for (const auto& point : pcl_point_cloud) { 19 point_cloud.points.emplace_back(point.x, point.y, point.z, 0.f); 20 point_cloud.intensities.push_back(1.0); 21 } 22 } 23 return std::make_tuple(point_cloud, FromRos(message.header.stamp)); 24 }
查看CollatedTrajectoryBuilder的AddSensorData方法,在CollatedTrajectoryBuilder的头文件中,包括4个覆写的AddSensorData(x,x)方法,方法中通过sensor::MakeDispatchable转换为Dispatchable<DataType>类型。
void AddSensorData(const std::string& sensor_id, const sensor::TimedPointCloudData& timed_point_cloud_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, timed_point_cloud_data)); } void AddSensorData(const std::string& sensor_id, const sensor::ImuData& imu_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, imu_data)); } void AddSensorData(const std::string& sensor_id, const sensor::OdometryData& odometry_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, odometry_data)); } void AddSensorData(const std::string& sensor_id, const sensor::FixedFramePoseData& fixed_frame_pose_data) override { AddSensorData(sensor::MakeDispatchable(sensor_id, fixed_frame_pose_data)); }
最终定位到了sensor_collator_对象的方法。
void CollatedTrajectoryBuilder::AddSensorData( std::unique_ptr<sensor::Data> data) { sensor_collator_->AddSensorData(trajectory_id_, std::move(data)); }
查看几个类CollatedTrajectoryBuilder,mapping::GlobalTrajectoryBuilder
CollatedTrajectoryBuilder::CollatedTrajectoryBuilder(sensor::Collator* const sensor_collator, const int trajectory_id, const std::unordered_set<std::string>& expected_sensor_ids, std::unique_ptr<TrajectoryBuilderInterface> wrapped_trajectory_builder) : sensor_collator_(sensor_collator), trajectory_id_(trajectory_id), wrapped_trajectory_builder_(std::move(wrapped_trajectory_builder)), last_logging_time_(std::chrono::steady_clock::now()) { sensor_collator_->AddTrajectory(trajectory_id, expected_sensor_ids, [this](const std::string& sensor_id, std::unique_ptr<sensor::Data> data) {HandleCollatedSensorData(sensor_id, std::move(data));}); }
mapping::GlobalTrajectoryBuilder构造函数
GlobalTrajectoryBuilder(const LocalTrajectoryBuilderOptions& options, const int trajectory_id, PoseGraph* const pose_graph, const LocalSlamResultCallback& local_slam_result_callback) : trajectory_id_(trajectory_id), pose_graph_(pose_graph), local_trajectory_builder_(options), local_slam_result_callback_(local_slam_result_callback) {}
注意这里的继承关系:
class CollatedTrajectoryBuilder : public TrajectoryBuilderInterface
class GlobalTrajectoryBuilder : public mapping::TrajectoryBuilderInterface
在mapping_2d和mapping_3d两个命名空间下分别存在2个local_trajectory_builder_类,实现了局部的扫描匹配和子图构建。代码在cartographer\cartographer\internal文件夹下。
另外一个重要的Node类变量是extrapolators_,该对象在Node类的处理Odometry和IMU数据时都有用到,作用是位姿推算。在文一种Node::AddTrajectory方法中调用了AddExtrapolator(trajectory_id, options);
1 std::map<int, ::cartographer::mapping::PoseExtrapolator> extrapolators_;
void Node::AddExtrapolator(const int trajectory_id, const TrajectoryOptions& options) { constexpr double kExtrapolationEstimationTimeSec = 0.001; // 1 ms CHECK(extrapolators_.count(trajectory_id) == 0); const double gravity_time_constant = node_options_.map_builder_options.use_trajectory_builder_3d() ? options.trajectory_builder_options.trajectory_builder_3d_options() .imu_gravity_time_constant() : options.trajectory_builder_options.trajectory_builder_2d_options() .imu_gravity_time_constant(); extrapolators_.emplace( std::piecewise_construct, std::forward_as_tuple(trajectory_id), std::forward_as_tuple( ::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec), gravity_time_constant)); }
map的emplace方法,高效插入。http://en.cppreference.com/w/cpp/container/map/emplace