120. Triangle
问题描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
解题思路:
我用队列对整个三角形进行遍历,对当前点:
1. 如果它是这行的第一个节点,那我们不弹出队首,只用它的值
2. 如果它是这行的最后一个节点,那我们弹出队首后不能在取队首,因为那是到达这一行第一个节点的和。
3. 如果它既不是第一个节点又不是最后一个节点,队首作为一个可能性,弹出队首后的队首又是一个新的可能,选择最小的那个
代码:
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { if(triangle.empty() || triangle[0].empty()) return 0; queue<int> q; q.push(triangle[0][0]); for(int i = 1; i < triangle.size(); i++){ for(int j = 0; j < triangle[i].size(); j++){ if(j == 0){ q.push(triangle[i][j] + q.front()); }else{ int p1 = q.front(); q.pop(); int p2 = ((j - 1) == (i - 1)) ? INT_MAX : q.front(); q.push(triangle[i][j] + min(p1, p2)); } } } int minV = INT_MAX; while(!q.empty()){ minV = min(minV, q.front()); q.pop(); } return minV; } };
我看到更快更简洁的解法:
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { for(int i = triangle.size() - 2; i >= 0; --i) { for(int j = 0; j <= i; ++j) { triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]); } } return triangle[0][0]; } };
我觉得很可以