300. Longest Increasing Subsequence

题目描述:

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [10,9,2,5,3,7,101,18]
Output: 4 
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4. 

Note:

  • There may be more than one LIS combination, it is only necessary for you to return the length.
  • Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

 

解题思路:

这道题目可以用动态规划来解:

dp[i]表示比在此之前比nums[i]小的数字的个数

dp[0] = 0;

需要通过for 循环来找可能比i小的数字

for(int j = i-1; j > -1; j++){

  if(nums[j] < nums[i]){

    dp[i]  = max(dp[i], dp[j]+1);

  }

}

注意dp中存的是比nums[i]小的数字,所以我们最后的返回值是需要+1的

而且我们需要用一个max 来记录最大的值。

代码:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.empty())
            return 0;
        int n = nums.size();
        vector<int> dp(n, 0);
        dp[0] = 0;
        int ret = 0;
        for(int i = 1; i < n; i++){
            int pre = 0;
            for(int j = i-1; j > -1; j--){
                if(nums[j] < nums[i]){
                    pre = max(pre, dp[j]+1);   
                }
            }
            dp[i] = pre;
            ret = max(dp[i], ret);
        }
        return ret+1;
    }
};

动态规划的时间复杂度为O(n2)

这道题的follow up是时间复杂度为O(nlogn)

看到logn和数组会莫名联想到二分搜索。

但是我还没有看明白这个解法。

大神总结的多种解法

O(NlongN) 

posted @ 2018-06-03 11:15  妖域大都督  阅读(93)  评论(0编辑  收藏  举报