python 自动化之路 day 05

内容目录:

  1. 列表生成式、迭代器&生成器
  2. 装饰器
  3. 软件目录结构规范
  4. 模块初始
  5. 常用模块

1.列表生成式,迭代器&生成器

列表生成式

需求:列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1

你可能会想到2种方式 :

 1 >>> a
 2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 3 >>> b = []
 4 >>> for i in a:b.append(i+1)
 5 ... 
 6 >>> b
 7 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 8 >>> a = b
 9 >>> a
10 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
法 1
 1 >>> a
 2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 3 >>> a = map(lambda x:x+1, a)
 4 >>> a
 5 <map object at 0x101d2c630>
 6 >>> for i in a:print(i)
 7 ... 
 8 3
 9 5
10 7
11 9
12 11
法 2

其实还有一种写法,如下 

1 >>> a = [i+1 for i in range(10)]
2 >>> a
3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
装逼版

这就叫做列表生成

 

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

1
2
3
4
5
6
>>> L = [x * for in range(10)]
>>> L
[0149162536496481]
>>> g = (x * for in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> g = (x * for in range(10))
>>> for in g:
...     print(n)
...
0
1
4
9
16
25
36
49
64
81

 

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1
2
3
4
5
6
7
def fib(max):
    n, a, b = 001
    while n < max:
        print(b)
        a, b = b, a + b
        = + 1
    return 'done'

注意,赋值语句:

1
a, b = b, a + b

相当于:

1
2
3
= (b, a + b) # t是一个tuple
= t[0]
= t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

1
2
3
4
5
6
7
8
9
10
11
12
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n,a,b = 0,0,1

    while n < max:
        #print(b)
        yield  b
        a,b = b,a+b

        n += 1

    return 'done' 

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

data = fib(10)
print(data)

print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())

#输出
<generator object fib at 0x101be02b0>
1
1
干点别的事
2
3
5
8
13

在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

 

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

关于如何捕获错误,后面的错误处理还会详细讲解。

还可通过yield实现在单线程的情况下实现并发运算的效果  

 1 import time
 2 def consumer(name):
 3     print("%s 准备吃包子啦!" %name)
 4     while True:
 5        baozi = yield
 6 
 7        print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
 8 
 9 
10 def producer(name):
11     c = consumer('A')
12     c2 = consumer('B')
13     c.__next__()
14     c2.__next__()
15     print("老子开始准备做包子啦!")
16     for i in range(10):
17         time.sleep(1)
18         print("做了2个包子!")
19         c.send(i)
20         c2.send(i)
21 
22 producer("alex")
View Code

 

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

 

1
2
3
4
5
6
7
8
9
10
11
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

1
2
3
4
5
6
7
8
9
>>> from collections import Iterator
>>> isinstance((x for in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

1
2
3
4
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

 

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

1
2
for in [12345]:
    pass

实际上完全等价于:

 1 # 首先获得Iterator对象:
 2 it = iter([1, 2, 3, 4, 5])
 3 # 循环:
 4 while True:
 5     try:
 6         # 获得下一个值:
 7         x = next(it)
 8     except StopIteration:
 9         # 遇到StopIteration就退出循环
10         break

 

2.装饰器

 

你是一家视频网站的后端开发工程师,你们网站有以下几个版块

1
2
3
4
5
6
7
8
9
10
11
def home():
    print("---首页----")
 
def america():
    print("----动作专区----")
 
def japan():
    print("----武侠专区----")
 
def henan():
    print("----魔幻专区----")

视频刚上线初期,为了吸引用户,你们采取了免费政策,所有视频免费观看,迅速吸引了一大批用户,免费一段时间后,每天巨大的带宽费用公司承受不了了,所以准备对比较受欢迎的几个版块收费,你拿到这个需求后,想了想,想收费得先让其进行用户认证,认证通过后,再判定这个用户是否是VIP付费会员就可以了,是VIP就让看,不是VIP就不让看就行了呗。 你觉得这个需求很是简单,因为要对多个版块进行认证,那应该把认证功能提取出来单独写个模块,然后每个版块里调用 就可以了,与是轻轻的就实现了下面的功能 。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#_*_coding:utf-8_*_
 
 
user_status = False #用户登录了就把这个改成True
 
def login():
    _username = "alex" #假装这是DB里存的用户信息
    _password = "abc!23" #假装这是DB里存的用户信息
    global user_status
 
    if user_status == False:
        username = input("user:")
        password = input("pasword:")
 
        if username == _username and password == _password:
            print("welcome login....")
            user_status = True
        else:
            print("wrong username or password!")
    else:
        print("用户已登录,验证通过...")
 
def home():
    print("---首页----")
 
def america():
    login() #执行前加上验证
    print("----欧美专区----")
 
def japan():
    print("----日韩专区----")
 
def henan():
    login() #执行前加上验证
    print("----河南专区----")
 
 
 
home()
america()
henan()

此时你信心满满的把这个代码提交给你的TEAM LEADER审核,没成想,没过5分钟,代码就被打回来了, TEAM LEADER给你反馈是,我现在有很多模块需要加认证模块,你的代码虽然实现了功能,但是需要更改需要加认证的各个模块的代码,这直接违反了软件开发中的一个原则“开放-封闭”原则,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块
  • 开放:对扩展开发

这个原则你还是第一次听说,我擦,再次感受了自己这个野生程序员与正规军的差距,BUT ANYWAY,老大要求的这个怎么实现呢?如何在不改原有功能代码的情况下加上认证功能呢?

高阶函数,就是把一个函数当做一个参数传给另外一个函数,我只需要写个认证方法,每次调用 需要验证的功能 时,直接 把这个功能 的函数名当做一个参数 传给 我的验证模块不就行了么

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#_*_coding:utf-8_*_
 
 
user_status = False #用户登录了就把这个改成True
 
def login(func): #把要执行的模块从这里传进来
    _username = "alex" #假装这是DB里存的用户信息
    _password = "abc!23" #假装这是DB里存的用户信息
    global user_status
 
    if user_status == False:
        username = input("user:")
        password = input("pasword:")
 
        if username == _username and password == _password:
            print("welcome login....")
            user_status = True
        else:
            print("wrong username or password!")
 
    if user_status == True:
        func() # 看这里看这里,只要验证通过了,就调用相应功能
 
def home():
    print("---首页----")
 
def america():
    #login() #执行前加上验证
    print("----欧美专区----")
 
def japan():
    print("----日韩专区----")
 
def henan():
    #login() #执行前加上验证
    print("----河南专区----")
 
 
 
home()
login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login
# home()
# america()
login(henan)

你很开心,终于实现了老板的要求,不改变原功能代码的前提下,给功能加上了验证

你改变了调用方式呀, 想一想,现在没每个需要认证的模块,都必须调用你的login()方法,并把自己的函数名传给你,人家之前可不是这么调用 的, 试想,如果 有100个模块需要认证,那这100个模块都得更改调用方式,这么多模块肯定不止是一个人写的,让每个人再去修改调用方式 才能加上认证

但问题是,如何即不改变原功能代码,又不改变原有调用方式,还能加上认证呢?

学过匿名函数没有?

1
2
3
4
def plus(n):
    return n+1
 
plus2 = lambda x:x+1

上面这两种写法是不是代表 同样的意思?

我给lambda x:x+1 起了个名字叫plus2,是不是相当于def plus2(x) ?

给函数赋值变量名就像def func_name 是一样的效果,如下面的plus(n)函数,你调用时可以用plus名,还可以再起个其它名字,如

1
2
3
calc = plus
 
calc(n)

之前写的下面这段调用 认证的代码 

1
2
3
4
5
home()
login(america) #需要验证就调用 login,把需要验证的功能 当做一个参数传给login
# home()
# america()
login(henan)

你之所改变了调用方式,是因为用户每次调用时需要执行login(henan),类似的。其实稍一改就可以了呀

1
2
3
home()
america = login(america)
henan = login(henan)

这样你,其它人调用henan时,其实相当于调用了login(henan), 通过login里的验证后,就会自动调用henan功能。 

那用户调用时,应该是下面这个样子

1
2
3
4
5
6
home()
america = login(america) #你在这里相当于把america这个函数替换了
henan = login(henan)
 
#那用户调用时依然写
america()

但问题在于,还不等用户调用 ,你的america = login(america)就会先自己把america执行了

想实现一开始你写的america = login(america)不触发你函数的执行,只需要在这个login里面再定义一层函数,第一次调用america = login(america)只调用到外层login,这个login虽然会执行,但不会触发认证了,因为认证的所有代码被封装在login里层的新定义 的函数里了,login只返回 里层函数的函数名,这样下次再执行america()时, 就会调用里层函数啦。。。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def login(func): #把要执行的模块从这里传进来
 
    def inner():#再定义一层函数
        _username = "alex" #假装这是DB里存的用户信息
        _password = "abc!23" #假装这是DB里存的用户信息
        global user_status
 
        if user_status == False:
            username = input("user:")
            password = input("pasword:")
 
            if username == _username and password == _password:
                print("welcome login....")
                user_status = True
            else:
                print("wrong username or password!")
 
        if user_status == True:
            func() # 看这里看这里,只要验证通过了,就调用相应功能
 
    return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数

这是开发中一个常用的玩法,叫语法糖,官方名称“装饰器”,其实上面的写法,还可以更简单

可以把下面代码去掉

1
america = login(america) #你在这里相当于把america这个函数替换了

只在你要装饰的函数上面加上下面代码

1
2
3
4
5
6
7
8
9
10
11
12
@login
def america():
    #login() #执行前加上验证
    print("----欧美专区----")
 
def japan():
    print("----日韩专区----")
 
@login
def henan():
    #login() #执行前加上验证
    print("----河南专区----")

效果是一样的。

给你的“河南专区”版块 加了个参数,然后,结果 出错了。

怎么传个参数就不行了呢?

你调用henan时,其实是相当于调用的login,你的henan第一次调用时henan = login(henan), login就返回了inner的内存地址,第2次用户自己调用henan("3p"),实际上相当于调用的时inner,但你的inner定义时并没有设置参数,但你给他传了个参数,所以自然就报错了

 

 

最终,你终于搞定了所有需求,完全遵循开放-封闭原则,最终代码如下 。

 

 第二2天早上,产品经理又提了新的需求,要允许用户选择用qq\weibo\weixin认证,此时的你,已深谙装饰器各种装逼技巧,轻松的就实现了新的需求。

 1 user_status = False
 2 def login(authtype):
 3     def outer(func):
 4         def inter():
 5             if authtype == 'qq':
 6                 _username = 'yang'
 7                 _password = 'abc123'
 8                 global  user_status
 9 
10                 if user_status == False:
11                     username = input("username: ")
12                     password = input("password: ")
13 
14                     if username == _username and password == _password:
15                         print("欢迎你,尊敬的VIP 。 ")
16                         user_status = True
17                     else:
18                         print("用户名或密码错误。 ")
19                 if user_status == True:
20                     func()
21             else:
22                 print("仅支持QQ。  ")
23         return  inter
24     return outer
25 def home():
26     print("---首页---")
27 @login('qq')
28 def amercia():
29     print("---欧美专区---")
30 
31 def japan():
32     print("---日韩专区---")
33 @login('weixin')
34 def henan():
35     print("---河南专区---")
36 
37 
38 home()
39 amercia()
40 japan()
41 henan()
View Code

 

3. 软件目录结构规范

为什么要设计好目录结构?

"设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

  1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
  2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

  1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
  2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

目录组织方式

关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

Foo/
|-- bin/
|   |-- foo
|
|-- foo/
|   |-- tests/
|   |   |-- __init__.py
|   |   |-- test_main.py
|   |
|   |-- __init__.py
|   |-- main.py
|
|-- docs/
|   |-- conf.py
|   |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

简要解释一下:

  1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
  2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
  3. docs/: 存放一些文档。
  4. setup.py: 安装、部署、打包的脚本。
  5. requirements.txt: 存放软件依赖的外部Python包列表。
  6. README: 项目说明文件。

除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

下面,再简单讲一下我对这些目录的理解和个人要求吧。

关于README的内容

这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它需要说明以下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点可以说明软件的基本原理。
  5. 常见问题说明。

我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

关于requirements.txt和setup.py

setup.py

一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

这个我是踩过坑的。

我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

  1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
  2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
  3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
  4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

requirements.txt

这个文件存在的目的是:

  1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
  2. 方便读者明确项目使用了哪些Python包。

这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

 

关于配置文件的使用方法

注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

很多项目对配置文件的使用做法是:

  1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
  2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

这种做法我不太赞同:

  1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
  2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
  3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

所以,我认为配置的使用,更好的方式是,

  1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
  2. 程序的配置也是可以灵活控制的。

能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

4.模块初始

模块,用一砣代码实现了某个功能的代码集合。 

类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。

如:os 是系统相关的模块;file是文件操作相关的模块

模块分为三种:

  • 自定义模块
  • 内置标准模块(又称标准库)
  • 开源模块 (https://pypi.python.org/pypi)

如何在py文件中引入自定义模块?

import os 

from os import time

通过:

1 for i in sys.path:
2     print(i)

我们可以得到模块路径。

在pycharm中自动帮我们把pychram的路径加进去了。

但是在windows 系统执行的时候是不会把pychram的路径加进去的。

这时候我们需要手工添加进去:

1 import  sys
2 import  os
3 BaseDir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
4 # #__file__是取文件的相对路径
5 # os.path.abspath()是取文件的绝对路径
6 # os.path.dirname()是取文件的上级路径
7 sys.path.append(BaseDir)

 

python2中
目录里没有__init__,那就只是一个目录,目录是不可以被导入的。
有__init__,那这个目录就变成了包 = "package"
no matter py2 or py3 , only the package can be imported
howere, in py 3 ,the directory will also be treated as package,
__init__.pi in py3 is not mandatory.
 
 

5.常用模块

5.1、OS

 提供对操作系统进行调用的接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")  运行shell命令,直接显示
os.environ  获取系统环境变量
os.path.abspath(path)  返回path规范化的绝对路径
os.path.split(path)  将path分割成目录和文件名二元组返回
os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path)  返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间

 

 5.2、sys

1
2
3
4
5
6
7
8
sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0)
sys.version        获取Python解释程序的版本信息
sys.maxint         最大的Int
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称
sys.stdout.write('please:') 标准输出
val = sys.stdin.readline()[:-1] 标准输入

 

Python进度条实现:

1 import  time
2 import  sys
3 for i in range(20):
4     time.sleep(0.1)
5     sys.stdout.write('>')
6     sys.stdout.flush()

 5.3 序列化模块

把内存对象转化成字符串的格式 就叫序列化。

把字符串转化成对应的内存对象 就叫反序列化。

序列化的作用就是持久化内存数据对象。

 

Python中用于序列化的两个模块:

  • json     跨平台跨语言的数据传输格式,用于【字符串】和 【python基本数据类型】 间进行转换
  • pickle   python内置的数据传输格式,多用于二进制形式,用于【python特有的类型】 和 【python基本数据类型】间进行转换

所有的语言都支持 json 。

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

#pickle.dumps将数据通过特殊的形式转换为只有python能识别的字符串
import pickle
data={'k1':123,'k2':'hello'}
p_str=pickle.dumps(data)
print(p_str)      ------->b'\x80\x03}q\x00(X\x02\x00\x00\x00k2q\x01X\x05\x00\x00\x00helloq\x02X\x02\x00\x00\x00k1q\x03K{u.'
s = pickle.loads(p_str)
print(s)       -------->{'k2': 'hello', 'k1': 123}
#pickle.dump将数据通过特殊的形式转换为只有python认识的字符串,并写入文件
with open('db','w') as fp:
    pickle.dump(data,fp)

json实例
#json.loads()#将字符串转换成python基本数据类型,注:里面一定要是双引号,外面是单引号
import json
s='{"name":"tina","age":"18"}'
l='[1,2,3,4]'
r=json.loads(l)
w=json.loads(s)
print(r,type(r))
print(w,type(w))
############执行结果如下:###########
[1, 2, 3, 4] <class 'list'>
{'age': '18', 'name': 'tina'} <class 'dict'>
#json.dumps()将python的基本数据类型转换成字符串
a={"name":"tina","age":"18"}
b=json.dumps(a)
print(b,type(b))
#############执行结果如下:##########
{"age": "18", "name": "tina"} <class 'str'>

#不带s的是对文件进行操作
dic = {'k1':123,'k2':345}
a=json.dump(dic,open('db','w'))
print(a,type(a))
#读内容
#字符串转换成字典
r=json.load(open('db','r'))
print(r,type(r))
#############执行结果如下:##########
写入db文件中的内容即为dict
{'k2': 345, 'k1': 123} <class 'dict'>

 

 

作业

作业需求:

模拟实现一个ATM + 购物商城程序

  1. 额度 15000或自定义
  2. 实现购物商城,买东西加入购物车,最后结账的时候调用信用卡接口结账
  3. 可以提现,手续费5%,最多只能取信用额度的一半
  4. 支持多账户登录,每个用户信息独立
  5. 支持账户间转账
  6. 记录每月日常消费流水,记录 date  shop_name  transaction_type  intrest(手续费)
  7. 提供还款接口
  8. ATM记录操作日志 
  9. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
  10. 用户认证用装饰器


程序介绍: 实现ATM常用功能 功能全部用python的基础知识实现,用到了time\os\sys\json\open\logging\函数\模块知识, 主要帮给大家一个简单的模块化编程的示例 程序结构: day5-atm/ ├── README ├── atm #ATM主程目录 │   ├── __init__.py │   ├── bin #ATM 执行文件 目录 │   │   ├── __init__.py │   │   ├── atm.py #ATM 执行程序 │   │   └── manage.py #ATM 管理端,未实现 │   ├── conf #配置文件 │   │   ├── __init__.py │   │   └── settings.py │   ├── core #主要程序逻辑都 在这个目录 里 │   │   ├── __init__.py │   │   ├── accounts.py #用于从文件里加载和存储账户数据 │   │   ├── auth.py #用户认证模块 │   │   ├── db_handler.py #数据库连接引擎 │   │   ├── logger.py #日志记录模块 │   │   ├── main.py #主逻辑交互程序 │   │   └── transaction.py #记账\还钱\取钱等所有的与账户金额相关的操作都 在这 │   ├── db #用户数据存储的地方 │   │   ├── __init__.py │   │   ├── account_sample.py #生成一个初始的账户数据 ,把这个数据 存成一个 以这个账户id为文件名的文件,放在accounts目录 就行了,程序自己去会这里找 │   │   └── accounts #存各个用户的账户数据 ,一个用户一个文件 │   │   └── 1234.json #一个用户账户示例文件 │   └── log #日志目录 │   ├── __init__.py │   ├── access.log #用户访问和操作的相关日志 │   └── transactions.log #所有的交易日志 └── shopping_mall #电子商城程序,需单独实现 └── __init__.py
posted @ 2016-11-06 14:27  杨小愚  阅读(282)  评论(0编辑  收藏  举报