最大流——EK算法

一、算法理论

【基本思想】

反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向弧)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

【算法详解】

这么一个图,求源点1到汇点4的最大流。

由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法。

#include <iostream>
#include <queue>
#include<string.h>
using namespace std;
#define arraysize 201
int maxData = 0x7fffffff;
int capacity[arraysize][arraysize]; //记录残留网络的容量
int flow[arraysize];                //标记从源点到当前节点实际还剩多少流量可用
int pre[arraysize];                 //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
int n,m;
queue<int> myqueue;
int BFS(int src,int des)
{
    int i,j;
    while(!myqueue.empty())       //队列清空
        myqueue.pop();
    for(i=1;i<m+1;++i)
    {
        pre[i]=-1;
    }
    pre[src]=0;
    flow[src]= maxData;
    myqueue.push(src);
    while(!myqueue.empty())
    {
        int index = myqueue.front();
        myqueue.pop();
        if(index == des)            //找到了增广路径
            break;
        for(i=1;i<m+1;++i)
        {
            if(i!=src && capacity[index][i]>0 && pre[i]==-1)
            {
                 pre[i] = index; //记录前驱
                 flow[i] = min(capacity[index][i],flow[index]);   //关键:迭代的找到增量
                 myqueue.push(i);
            }
        }
    }
    if(pre[des]==-1)      //残留图中不再存在增广路径
        return -1;
    else
        return flow[des];
}
int maxFlow(int src,int des)
{
    int increasement= 0;
    int sumflow = 0;
    while((increasement=BFS(src,des))!=-1)
    {
         int k = des;          //利用前驱寻找路径
         while(k!=src)
         {
              int last = pre[k];
              capacity[last][k] -= increasement; //改变正向边的容量
              capacity[k][last] += increasement; //改变反向边的容量
              k = last;
         }
         sumflow += increasement;
    }
    return sumflow;
}
int main()
{
    int i,j;
    int start,end,ci;
    while(cin>>n>>m)
    {
        memset(capacity,0,sizeof(capacity));
        memset(flow,0,sizeof(flow));
        for(i=0;i<n;++i)
        {
            cin>>start>>end>>ci;
            if(start == end)               //考虑起点终点相同的情况
               continue;
            capacity[start][end] +=ci;     //此处注意可能出现多条同一起点终点的情况
        }
        cout<<maxFlow(1,m)<<endl;
    }
    return 0;
}

显而易见capacity存变的流量,进行ek求解。

对于BFS找增广路:

  • flow[1]=INF,pre[1]=0;

        源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

路径也自然变成了这样:

  • flow[1]=INF,pre[1]=0;

   源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

  capacity[1][4]=0!>0,跳过

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

 图也被改成这样:

接下来同理:

这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)

 

二、算法分析

  • 时间复杂度为O(m2n)
  • 而接下来的Dinic算法的时间复杂度为O(n2m)
posted @ 2017-08-12 23:13  GGBeng  阅读(966)  评论(1编辑  收藏  举报