python(33)- 模块与包
一 模块
1 什么是模块?
一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
2 为何要使用模块?
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,
需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。
这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用。
3.如何使用模块?
3.1 import
示例文件:spam.py,文件名spam.py,模块名spam
#spam.py print('from the spam.py') money=1000 def read1(): print('spam->read1->money',money) def read2(): print('spam->read2 calling read') read1() def change(): global money money=0
3.1.1 模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下:
#test.py import spam #只在第一次导入时才执行spam.py内代码,此处的显式效果是只打印一次'from the spam.py',当然其他的顶级代码也都被执行了,只不过没有显示效果. import spam import spam import spam ---> from the spam.py
我们可以从sys.module中找到当前已经加载的模块,sys.module是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。
3.1.2 每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突
#测试一:money与spam.money不冲突 #test.py import spam money=10 print(spam.money) --->from the spam.py 1000
#测试二:read1与spam.read1不冲突 #test.py import spam def read1(): print('========') spam.read1() --->from the spam.py spam->read1->money 1000
#测试三:执行spam.change()操作的全局变量money仍然是spam中的 #test.py import spam money=1 spam.change() print(money) --->from the spam.py 1
3.1.3 总结:首次导入模块spam时会做三件事:
1.为源文件(spam模块)创建新的名称空间,在spam中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
2.在新创建的命名空间中执行模块中包含的代码,见初始导入import spam。
事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放入模块全局名称空间表,用globals()可以查看。
3.创建名字spam来引用该命名空间。这个名字和变量名没什么区别,都是‘第一类的’,且使用spam.名字的方式可以访问spam.py文件中定义的名字,
spam.名字与test.py中的名字来自两个完全不同的地方。
3.1.4 为模块名起别名
相当于m1=1;m2=m1
import spam as sm print(sm.money)
为已经导入的模块起别名的方式对编写可扩展的代码很有用,假设有两个模块xmlreader.py和csvreader.py,
它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块,例如
if file_format == 'xml': import xmlreader as reader elif file_format == 'csv': import csvreader as reader data=reader.read_date(filename)
3.1.5 在一行导入多个模块
不推荐使用
import sys,os,re
3.2 from ... import...
3.2.1 对比import spam,会将源文件的名称空间'spam'带到当前名称空间中,使用时必须是spam.名字的方式
而from 语句相当于import,也会创建新的名称空间,但是将spam中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以了。
from spam import read1,read2
这样在当前位置直接使用read1和read2就好了,执行时,仍然以spam.py文件全局名称空间
#测试一:导入的函数read1,执行时仍然回到spam.py中寻找全局变量money #test.py from spam import read1 money=1000 read1() --->from the spam.py spam->read1->money 1000 #测试二:导入的函数read2,执行时需要调用read1(),仍然回到spam.py中找read1() #test.py from spam import read2 def read1(): print('==========') read2() --->from the spam.py spam->read2 calling read spam->read1->money 1000
如果当前有重名read1或者read2,那么会有覆盖效果。
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了 #test.py from spam import read1 def read1(): print('==========') read1() --->from the spam.py ==========
需要特别强调的一点是:python中的变量赋值不是一种存储操作,而只是一种绑定关系,如下:
from spam import money,read1 money=100 #将当前位置的名字money绑定到了100 print(money) #打印当前的名字 read1() #读取spam.py中的名字money,仍然为1000 --->from the spam.py 100 spam->read1->money 1000
3.2.2 也支持as
from spam import read1 as read
3.2.3 也支持导入多行
from spam import (read1, read2, money)
3.2.4 from spam import * 把spam中所有的不是以下划线(_)开头的名字都导入到当前位置,大部分情况下我们的python程序不应该使用这种导入方式,
因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
from spam import * #将模块spam中所有的名字都导入到当前名称空间 print(money) print(read1) print(read2) print(change) --->from the spam.py 1000 <function read1 at 0x1012e8158> <function read2 at 0x1012e81e0> <function change at 0x1012e8268>
可以使用__all__来控制*(用来发布新版本)
在spam.py中新增一行
__all__=['money','read1'] #这样在另外一个文件中用from spam import *就这能导入列表中规定的两个名字,但read2无法被导入。
3.2.5 考虑到性能的原因,每个模块只被导入一次,放入字典sys.module中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前
导入的模块有的同学可能会想到直接从sys.module中删除一个模块不就可以卸载了吗,注意了,你删了sys.module中的模块对象仍然可能被其他程序的组件所用,
因而不会被清除。
特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。
如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。
reload:在不中止Python程序的情况下,提供了一个重新载入模块文件代码的方法,但仅在python2中使用,python3中取消了这个方法。
#aa.py的初始内容 def func1(): print('func1')
#执行test.py import time,importlib import aa time.sleep(20) # importlib.reload(aa) aa.func1()
在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。
打开importlib注释,重新测试。
3.3 把模块当做脚本执行
我们可以通过模块的全局变量__name__来查看模块名:
当做脚本运行(运行这个文件):
__name__ 等于'__main__'
#运行spam.py #spam.py的内容 print(__name__) --->__main__
当做模块导入:
__name__=spam
#运行test.py #test.py内容如下 import spam --->spam
作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == '__main__': #被当作脚本运行则运行"if __name__ == '__main__':"下的程序;被当作模块运行时无法运行"if __name__ == '__main__':"下的程序。
#运行spam.py #spam.py的内容 if __name__=="__main__": print("===") --->===
#运行test.py #test.py内容如下 import spam #输出内容为空
3.4 模块搜索路径
python解释器在启动时会自动加载一些模块,可以使用sys.modules查看。
在第一次导入某个模块时(比如spam),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用。
如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找spam.py文件。
所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块。
sys.path的初始化的值来自于:
The directory containing the input script (or the current directory when no file is specified).
PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
The installation-dependent default.
需要特别注意的是:我们自定义的模块名不应该与系统内置模块重名。
在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。
>>> import sys >>> sys.path.append('/a/b/c/d') >>> sys.path.insert(0,'/x/y/z') #排在前的目录,优先被搜索
注意:搜索时按照sys.path中从左到右的顺序查找,位于前的优先被查找,sys.path中还可能包含.zip归档文件和.egg文件,
python会把.zip归档文件当成一个目录去处理,
#首先制作归档文件:zip module.zip foo.py bar.py import sys sys.path.append('module.zip') import foo,bar #也可以使用zip中目录结构的具体位置 sys.path.append('module.zip/lib/python')
至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了
额外元数据(如版本号,依赖项等)的.zip文件。
需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种
规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。
模块路径:
#获取路径 import sys print(sys.path) --->['E:\\python学习\\day35异常处理', 'E:\\python学习', 'C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\python36.zip', 'C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\DLLs', 'C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\lib', 'C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36', 'C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\lib\\site-packages'] #其中存放标准库为:C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\lib #存放第三方库,扩充库的:C:\\Users\\Administrator.PC-201509301704\\AppData\\Local\\Programs\\Python\\Python36\\lib\\site-packages'] #添加路径 import os pre_path = os.path.abspath('../') #当前路径 import sys sys.path.append(pre_path) #添加环境变量,临时生效。当模块不在搜索路径时,添加路径后调用模块时可以从该路径调用模块。 环境变量:永久生效方法:我的电脑--->系统属性--->环境变量--->Path路径中添加,以";" 分割。
3.5 编译python文件
只有导入模块,import才会产生pyc文件。
为了提高模块的加载速度,Python缓存编译的版本,每个模块在__pycache__目录的以module.version.pyc的形式命名,通常包含了python的版本号,
如在CPython版本3.3,关于spam.py的编译版本将被缓存成__pycache__/spam.cpython-33.pyc,这种命名约定允许不同的版本,
不同版本的Python编写模块共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,
所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,
但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,
因而它的出现仅仅是用来提升模块的加载速度的。
提示:
1.模块名区分大小写,foo.py与FOO.py代表的是两个模块
2.你可以使用-O或者-OO转换python命令来减少编译模块的大小
-O转换会帮你去掉assert语句 -OO转换会帮你去掉assert语句和__doc__文档字符串 由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要的情况下使用这些选项。
3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的
4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,
因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件
模块可以作为一个脚本(使用python -m compileall)编译Python源 python -m compileall /module_directory 递归着编译 如果使用python -O -m compileall /module_directory -l则只一层 命令行里使用compile()函数时,自动使用python -O -m compileall 详见:https://docs.python.org/3/library/compileall.html#module-compileall
3.6 标准模块
python提供了一个标准模块库,一些模块被内置到解释器中,这些提供了不属于语言核心部分的操作的访问,但它们是内置的,
无论是为了效率还是提供对操作系统原语的访问。这些模块集合是依赖于底层平台的配置项,如winreg模块只能用于windows系统。
特别需要注意的是,sys模块内建在每一个python解释器。
sys.ps1
sys.ps2
这俩只在命令行有效,得出的结果,标识了解释器是在交互式模式下。
变量sys.path是一个决定了模块搜索路径的字符串列表,它从环境变量PYTHONOATH中初始化默认路径,
如果PYTHONPATH没有设置则从内建中初始化值,我们可以修改它sys.path.append
#os一种好的处理路径的方式 import os os.path.normpath(path) #规范化路径,转换path的大小写和斜杠 a='/Users/jieli/test1/\\\a1/\\\\aa.py/../..' print(os.path.normpath(a)) ''' 打印结果: \Users\jieli\test1 ''' #具体应用 import os,sys possible_topdir = os.path.normpath(os.path.join( os.path.abspath(__file__), os.pardir, #上一级 os.pardir, os.pardir )) sys.path.insert(0,possible_topdir)
3.7 dir()函数
内建函数dir是用来查找模块中定义的名字,返回一个有序字符串列表。
import spam
dir(spam)
如果没有参数,dir()列举出当前定义的名字。
dir()不会列举出内建函数或者变量的名字,它们都被定义到了标准模块builtin中,可以列举出它们,
import builtins
dir(builtins)
二 包
包是一种通过使用‘.模块名’来组织python模块名称空间的方式。
无论是import形式还是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提高警觉:这是关于包才有的导入语法。
包的本质就是一个包含__init__.py文件的目录。
包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间。
glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py test.py #test.py和glance/ 同一级别
#文件内容 #policy.py def get(): print('from policy.py') #versions.py def create_resource(conf): print('from version.py: ',conf) #manage.py def main(): print('from manage.py') #models.py def register_models(engine): print('from models.py: ',engine)
2.1 注意事项
1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。
2.对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。
3.对比import item 和from item import name的应用场景:
如果我们想直接使用name那必须使用后者。
2.2 import
我们在与包glance同级别的文件中test.py中测试
#test.py文件内容 import glance.api.policy #导入包下的模块 glance.api.policy.get() #导入包下的模块的调用属性 --->from policy.py
2.3 from ... import ...
需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法。
我们在与包glance同级别的文件中test.py中测试
#test.py文件内容 from glance.api.policy import get #导入包下的模块下的属性 get() #属性可以直接使用 --->from policy.py
#test.py文件内容 from glance.api import policy #导入包下的模块下的属性 policy.get() #属性可以直接使用 --->from policy.py
from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误
#test.py文件内容 from glance.api import policy.get policy.get() --->语法错误
2.4 __init__.py文件
不管是哪种方式,只要是第一次导入包或者是包的任何其他部分,都会依次执行包下的__init__.py文件(我们可以在每个包的文件内都打印一行内容来验证一下),这个文件可以为空,但是也可以存放一些初始化包的代码。
#glance目录下的__init__文件内容: print("glance包的__init__文件")
#glance目录下的api目录下的__init__文件内容: print("api包的__init__文件")
#与glance目录同级别的test.py文件内容 from glance.api import policy #查找glance,自动执行glance下的__init__文件;查找api,自动执行api下的__init__文件 --->glance包的__init__文件 api包的__init__文件
#与glance目录同级别的test.py文件内容 import glance.api #查找glance,自动执行glance下的__init__文件;查找api,自动执行api下的__init__文件 --->glance包的__init__文件 api包的__init__文件 glance.api.policy --->报错
2.5 from glance.api import *
在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。
此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:
#api下的__init__文件内容 print("api包的__init__文件)
#与glance同等级下的test.py文件内容 from glance.api import *
--->glance包的__init__文件
api包的__init__文件
print(policy) #报错 print(versions) #报错
更改api下的__init__文件内容:
#api下的__init__文件内容 print("api包的__init__文件) __all__=["x","y","policy"] #只和import * 中的*匹配 x=1 y=2
#与glance同等级下的test.py文件内容 from glance.api import * --->glance包的__init__文件 api包的__init__文件 prin(x) --->1 prin(y) --->2 print(policy) #正常输出,不会报错 print(versions) #正常输出,不会报错 policy.get() --->from policy.py
2.6 绝对导入和相对导入
2.4 __init__.py文件中最后一个例子报错,解决方案:
#尝试在api下的__init__文件中导入模块 #api下的__init__文件内容 print("api包的__init__文件) __all__=["x","y","policy"] #只和import * 中的*匹配 x=1 y=2 import policy #虽然policy和api下的__init__文件是同一等级,但还是解决不了问题。但是直接运行api下的__init__文件不会报错
#与glance目录同级别的test.py文件内容 import glance.api #导入模块glance.api,其中模块内容import policy是在test.py下运行的,所以先从内存、内置模块、sys.path路径中包含的路径找,均找不到,所以报错。不能解决问题。 --->glance包的__init__文件 api包的__init__文件 print(glance.api.policy) --->报错
此时使用绝对路径和相对路径来实现。
我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,
这时候就有绝对导入和相对导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)
#使用绝对路径解决问题 #api下的__init__文件内容 print("api包的__init__文件) __all__=["x","y","policy"] #只和import * 中的*匹配 x=1 y=2 from glance.api import policy
#与glance目录同级别的test.py文件内容 import glance.api --->glance包的__init__文件 api包的__init__文件
glance.api.policy.get() #不会报错,正常输出。
--->from policy.py
当模块名修改,绝对导入容易出错,这时用相对导入。推荐使用相对导入。
#使用相对路径解决问题 #api下的__init__文件内容 print("api包的__init__文件) __all__=["x","y","policy"] x=1 y=2 from . import policy #. 代表当前目录api;若..则代表上一层目录glance。
#与glance目录同级别的test.py文件内容 import glance.api --->glance包的__init__文件 api包的__init__文件 glance.api.policy.get() #不会报错,正常输出。 --->from policy.py
test.py调用cmd目录下的manage.py模块:
#使用相对路径解决问题 #api下的__init__文件内容 print("api包的__init__文件) __all__=["x","y","policy"] x=1 y=2 from .. cmd.manage import main() #..代表上一层目录glance。
#与glance目录同级别的test.py文件内容 import glance.api --->glance包的__init__文件 api包的__init__文件 glance.api.main() --->from manage.py
上面使用绝对路径的代码,单独运行__init__会出错。
特别需要注意的是:可以用import导入内置或者第三方模块,但是要绝对避免使用import来导入自定义包的子模块,应该使用from... import ...的绝对或者相对导入,且包的相对导入只能用from的形式。
注:包里的有些模块运行其本身时会报错,忽略。因为包里的文件及包里的模块不是执行用的,是导入给别人使用的。
2.7 单独导入包
#glance下的__init__内容 print('glance包的__init__文件') #与glance同级别的test.py内容 import glance glance.api.policy --->报错 #因为glance下的__init__文件中没有api.policy
单独导入包,使其能执行包中的函数
#glance目录下的__init__文件内容 print('glance包的__init__文件') from .api.policy import get #policy文件中定义有get函数 from .cmd.manage import main #manage文件中定义有main函数
#在glance同级的test.py中 import glance --->glance包的__init__文件 glance .api.policy.get() --->api包的__init__文件 from policy.py glance .cmd.manage.main() --->cmd包的__init__文件 from manage.py
当glance包剪切掉到另一目录下,即glance和test.py在不同目录下,则使用sys.path.append(r"glance包的绝对路径")使test.py能正常运行。
这种解决方法缺陷是不可能每次都手动拷贝路径。
#test.py内容,test.py文件目录包和glance文件的目录aaa它们的上一级目录是相同的 import sys,os #print(os.path.abspath(__file__)) #得到的是当前文件的绝对路径 #print(os.path.dirname(os.path.abspath(__file__))) #得到的是当前文件的目录名 base_dir=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #获取的是包和aaa共同的目录 sys.path.append(r"base_dir") from aaa import glance --->glance包的__init__文件 glance.get() --->api包的__init__文件 from policy.py
千万别问:__all__不能解决吗,__all__是用于控制from...import *