FIR调用DSP48E_05

作者:桂。

时间:2018-02-06  17:52:38

链接:http://www.cnblogs.com/xingshansi/p/8423457.html 


前言

  到目前为止,本文没有对滤波器实现进行梳理,FIR仿真验证的平台(基于FPGA实现)包括HLS、Systemgenerator,至于*.v 与*.sv可通过程序(如python实现)完成转化,FIR的零散记录到本篇告一段落,本文重点记录DSP48E的使用

一、DSP48E

  A-基本结构

主要参考UG479.pdf,DSP48E1结构:

可以看出主要功能为:P = (A±D)×B±C。具体功能可参考IP核:

slice结构及位宽关系:

DSP48E在Xilinx内部的布局:

常用器件DSP48E资源:

  B-原语调用

原语类似C语言的汇编,直接关联器件的底层结构,因此通常时序可以做的更好。

DSP48E支持原语调用,记录两个例子:

Ex1:

`timescale 1ns / 1ps

// m = b * (a + d)
// p = c+m or p+m
module dsp48_wrap_f
  (
   input 		  clock,
   input 		  ce1,
   input 		  ce2,
   input 		  cem,
   input 		  cep,
   input signed [24:0] 	  a,
   input signed [17:0] 	  b,
   input signed [47:0] 	  c,
   input signed [24:0] 	  d, // this has two fewer pipe stages
   // X+Y is usually the multiplier output (M)
   // Z is either P, PCIN or C
   // bit 1:0: 0: Z+X+Y 3:Z-(X+Y) 1: -Z + (X+Y) 2: -1*(Z+X+Y+1)
   // bits 3:2, 0: Z=0, 1: Z=PCIN, 2: Z=P, 3: Z = C
   // bit 4: sub in pre add
   input [4:0] 		  mode,
   input signed [47:0] 	  pcin,
   output signed [47:0]   pcout,
   output signed [47-S:0] p);

   parameter S = 0;

   parameter USE_DPORT = "FALSE"; // enabling adds 1 reg to A path
   parameter AREG = 1;
   parameter BREG = 1; // 0 - 2

   wire signed [47:0] 	   dsp_p;
   assign p = dsp_p[47:S];

   DSP48E1
     #(
       .A_INPUT("DIRECT"),   // "DIRECT" "CASCADE"
       .B_INPUT("DIRECT"),   // "DIRECT" "CASCADE"
       .USE_DPORT(USE_DPORT),
       .USE_MULT("MULTIPLY"),// "MULTIPLY" "DYNAMIC" "NONE"
       .USE_SIMD("ONE48"),   // "ONE48" "TWO24" "FOUR12"
       // pattern detector - not used
       .AUTORESET_PATDET("NO_RESET"), .MASK(48'h3fffffffffff),
       .PATTERN(48'h000000000000), .SEL_MASK("MASK"),
       .SEL_PATTERN("PATTERN"), .USE_PATTERN_DETECT("NO_PATDET"),
       // register enables
       .ACASCREG(1),   // pipeline stages between A/ACIN and ACOUT (0, 1 or 2)
       .ADREG(1),      // pipeline stages for pre-adder (0 or 1)
       .ALUMODEREG(1), // pipeline stages for ALUMODE (0 or 1)
       .AREG(AREG),       // pipeline stages for A (0, 1 or 2)
       .BCASCREG(1),   // pipeline stages between B/BCIN and BCOUT (0, 1 or 2)
       .BREG(BREG),    // pipeline stages for B (0, 1 or 2)
       .CARRYINREG(1), // this and below are 0 or 1
       .CARRYINSELREG(1),
       .CREG(1),
       .DREG(1),
       .INMODEREG(1),
       .MREG(1),
       .OPMODEREG(1),
       .PREG(1))
   dsp48_i
     (
      // status
      .OVERFLOW(),
      .PATTERNDETECT(), .PATTERNBDETECT(),
      .UNDERFLOW(),
      // outs
      .CARRYOUT(),
      .P(dsp_p),
      // control
      .ALUMODE({2'd0, mode[1:0]}),
      .CARRYINSEL(3'd0),
      .CLK(clock),
      .INMODE({1'b0,mode[4],3'b100}),
      .OPMODE({1'b0,mode[3:2],4'b0101}),
      // signal inputs
      .A({5'd0,a}), // 30
      .B(b), // 18
      .C(c), // 48
      .CARRYIN(1'b0),
      .D(d), // 25
      // cascade ports
      .ACOUT(),
      .BCOUT(),
      .CARRYCASCOUT(),
      .MULTSIGNOUT(),
      .PCOUT(pcout),
      .ACIN(30'h0),
      .BCIN(18'h0),
      .CARRYCASCIN(1'b0),
      .MULTSIGNIN(1'b0),
      .PCIN(pcin),
      // clock enables
      .CEA1(ce1), .CEA2(ce2),
      .CEAD(1'b1),
      .CEALUMODE(1'b1),
      .CEB1(ce1), .CEB2(ce2),
      .CEC(1'b1),
      .CECARRYIN(1'b1),
      .CECTRL(1'b1), // opmode
      .CED(1'b1),
      .CEINMODE(1'b1),
      .CEM(cem), .CEP(cep),
      .RSTA(1'b0),
      .RSTALLCARRYIN(1'b0),
      .RSTALUMODE(1'b0),
      .RSTB(1'b0),
      .RSTC(1'b0),
      .RSTCTRL(1'b0),
      .RSTD(1'b0),
      .RSTINMODE(1'b0),
      .RSTM(1'b0),
      .RSTP(1'b0)
      );

endmodule // dsp48_wrap_f

Ex2

// p = c + b * a 3 cycles if r else p = p + b * a
module macc
  (
   input 		  clock,
   input [2:0] 		  ce, // bit 0 = a, 1 = b , 2 = c
   input 		  r, // reset accumulator to c + a*b
   input signed [24:0] 	  a,
   input signed [17:0] 	  b,
   input signed [47:0] 	  c,
   output signed [47-S:0] p);

   parameter S = 0;
   parameter AREG = 1; // 0 - 2
   parameter BREG = 1; // 0 - 2

   wire signed [47:0] 	   dsp_p;
   assign p = dsp_p[47:S];

   // X+Y is usually the multiplier output (M)
   // Z is either P, PCIN or C
   // bit 1:0: 0: Z+X+Y 3:Z-(X+Y) 1: -Z + (X+Y) 2: -1*(Z+X+Y+1)
   // bits 3:2, 0: Z=0, 1: Z=PCIN, 2: Z=P, 3: Z = C
   // bit 4: sub in pre add
   wire [4:0]  mode = {1'b0, r ? 2'b11 : 2'b10, 2'b00};

   DSP48E1
     #(
       .A_INPUT("DIRECT"),   // "DIRECT" "CASCADE"
       .B_INPUT("DIRECT"),   // "DIRECT" "CASCADE"
       .USE_DPORT("FALSE"),
       .USE_MULT("MULTIPLY"),// "MULTIPLY" "DYNAMIC" "NONE"
       .USE_SIMD("ONE48"),   // "ONE48" "TWO24" "FOUR12"
       // pattern detector - not used
       .AUTORESET_PATDET("NO_RESET"), .MASK(48'h3fffffffffff),
       .PATTERN(48'h000000000000), .SEL_MASK("MASK"),
       .SEL_PATTERN("PATTERN"), .USE_PATTERN_DETECT("NO_PATDET"),
       // register enables
       .ACASCREG(1),   // pipeline stages between A/ACIN and ACOUT (0, 1 or 2)
       .ADREG(1),      // pipeline stages for pre-adder (0 or 1)
       .ALUMODEREG(1), // pipeline stages for ALUMODE (0 or 1)
       .AREG(AREG),       // pipeline stages for A (0, 1 or 2)
       .BCASCREG(1),   // pipeline stages between B/BCIN and BCOUT (0, 1 or 2)
       .BREG(BREG),    // pipeline stages for B (0, 1 or 2)
       .CARRYINREG(1), // this and below are 0 or 1
       .CARRYINSELREG(1),
       .CREG(1),
       .DREG(1),
       .INMODEREG(1),
       .MREG(1),
       .OPMODEREG(1),
       .PREG(1))
   dsp48_i
     (
      // status
      .OVERFLOW(),
      .PATTERNDETECT(), .PATTERNBDETECT(),
      .UNDERFLOW(),
      // outs
      .CARRYOUT(),
      .P(dsp_p),
      // control
      .ALUMODE({2'd0, mode[1:0]}),
      .CARRYINSEL(3'd0),
      .CLK(clock),
      .INMODE({1'b0,mode[4],3'b100}),
      .OPMODE({1'b0,mode[3:2],4'b0101}),
      // signal inputs
      .A({5'd0,a}), // 30
      .B(b), // 18
      .C(c), // 48
      .CARRYIN(1'b0),
      .D(25'd0), // 25
      // cascade ports
      .ACOUT(),
      .BCOUT(),
      .CARRYCASCOUT(),
      .MULTSIGNOUT(),
      .PCOUT(),
      .ACIN(30'h0),
      .BCIN(18'h0),
      .CARRYCASCIN(1'b0),
      .MULTSIGNIN(1'b0),
      .PCIN(48'h0),
      // clock enables
      .CEA1(1'b1), .CEA2(ce[0]),
      .CEAD(1'b1),
      .CEALUMODE(1'b1),
      .CEB1(1'b1), .CEB2(ce[1]),
      .CEC(ce[2]),
      .CECARRYIN(1'b1),
      .CECTRL(1'b1), // opmode
      .CED(1'b1),
      .CEINMODE(1'b1),
      .CEM(1'b1), .CEP(1'b1),
      .RSTA(1'b0),
      .RSTALLCARRYIN(1'b0),
      .RSTALUMODE(1'b0),
      .RSTB(1'b0),
      .RSTC(1'b0),
      .RSTCTRL(1'b0),
      .RSTD(1'b0),
      .RSTINMODE(1'b0),
      .RSTM(1'b0),
      .RSTP(1'b0)
      );

endmodule

  

二、FIR实现思路

考虑到调用DSP48E,首先分析DSP48E乘法/乘加的时序特性:

可以看出输出相比输入,延迟4拍,仿真3*5,结果与理论一致:

以N-1(不失一般性,N=6)阶FIR为例,由于乘法可支持25*18,假设数据18(bit),滤波器系数25(bit)。滤波器系数个数为6:

因此可得FIR实现的基本流程:

  • Step1:对于t时刻,输入数据与滤波器系数相乘,得到y(t)[N-1:0]
  • Step2:更新数据流:data_chain(t) = y(t)[N-1:0] + [data_chain(t-1) [N-2:0],0]
  • Step3:输出滤波结果:output = data_chain(t) [N-1]

根据算法流程,设计FPGA数据流:

   1)参数位宽定义

  • 输入数据:parameter indatwidth = 18;
  • 滤波器系数:parameter coefwidth = 25;
  • DSP48核输出位宽:localparam multoutwidth = coefwidth + indatwidth;
  • 输出数据(自定义):parameter outdatwidth = 18;
  • 数据流(截断位宽自定义):这里 localparam chainwidth 用multoutwidth替代;

  2)数据运算拆解

结合上文Step2的特性,细节上:a)可针对coef0单独用乘法运算、其他coef利用乘加运算,b)也可以对datachain补零,这里采用后一种思路。

  • 输入输出  

  input [indatwidth-1:0] datin;

  input [5:0][coefwidth-1:0] coef;

  input clk,rst;

  output signed [outdatwidth-1:0] datout;

  • DSP48的乘加操作

  genvar ii;

  generate
    for(ii = 0; ii < N; ii++)
    begin
    multiplus mpu(
    .CLK(clk),
    .A(coef[ii]),
    .B(datin),
    .C(dti[ii]),
    .P(mres[ii])
    );
    end
  endgenerate

  • 关于截位

  对数据进行截位,例如对x截位,通常不是直接舍去其他位数,而是对x进行4舍5入,转化到FPGA就是:

  x1 <= x[起始位置 -:  有效位数] + 1;

  result <= (x1>>>1);

   这里仅论证实现思路,截位的细节操作不再添加。

  • 乘法器的延拍

genvar ii;
generate
for(ii = 1; ii < N; ii++)
begin
always @(posedge clk) begin
dtchain[ii][fixdelay-1:1] <= dtchain[ii][fixdelay-2:0];
dtchain[ii][0] <= mres[ii-1][multoutwidth-1:0];
end
end
endgenerate

三、仿真验证

 首先MATLAB仿真验证上述步骤的有效性:

%FIR功能验证
clc;clear all;close all;
coef = [-15,19,123,123,19,-15];
datin = [3,13,17,21,24,28,31];
%main
%不考虑延拍,datachain不必引入
N = 6;
mres = zeros(1,N);
dto = zeros(1,N);
result = [];
for i = 1:length(datin)
    dto(2:N) = mres(1:N-1);
    mres = datin(i)*coef + dto;
    result = [result,mres(N)];
end
%compare
conv_res = conv(datin,coef);
[result;conv_res(1:length(datin))]

  算法运算结果与理论一致:

编写测试模块及testbench:

winfilter.sv

`timescale 1ns / 1ps
module winfilter(coef, datin, clk, rst, datout);
//parameter
parameter indatwidth = 18;
parameter outdatwidth = 18;
parameter coefwidth = 25;
localparam multoutwidth = coefwidth + indatwidth;
localparam N = 6;
localparam fixdelay = 4;//smultplus delay
//port
input [indatwidth-1:0] datin;
input [N-1:0][coefwidth-1:0] coef;
input clk,rst;
output [outdatwidth-1:0] datout;
//define
reg signed [outdatwidth-1:0] datout;
reg  [N-1:0][fixdelay-1:0][multoutwidth-1:0] dtchain;
wire [N-1:0][multoutwidth:0] mres;
//initial
initial
begin
	dtchain <= 0;
	datout <= 0;
end
//main
genvar ii;
generate
	for(ii = 1; ii < N; ii++)
	begin
    always @(posedge clk)  begin
        dtchain[ii][fixdelay-1:1] <= dtchain[ii][fixdelay-2:0];
        dtchain[ii][0] <= mres[ii-1][multoutwidth-1:0];
    end
	end
endgenerate
generate
	for(ii = 0; ii < N; ii++)
	begin
    multiplus multp_inst(
        .CLK(clk),
        .A(coef[ii]),
        .B(datin),
        .C(dtchain[ii][fixdelay-1]),
        .P(mres[ii])
        );
	end
endgenerate
//output 	
always @(posedge clk)
begin
	if(rst)
	begin
		datout <= 0;
	end
	else
	begin
        datout <= mres[N-1][multoutwidth-19 -: outdatwidth];
		//datout <= mres[N-1][multoutwidth-2 -: outdatwidth];
	end
end
endmodule

  tb

`timescale 1ns / 1ps
module tb();
logic [17:0] datin;
logic clk,rst;
logic [5:0][24:0] coef;
logic [17:0] datout;

//-------------------------------------//
parameter data_num = 32'd1024;
reg [17:0]  data_men[1:data_num];
initial begin
    $readmemb("D:/PRJ/vivado/simulation_ding/009_lpf6tap/matlab/sin_data.txt",data_men);
end
integer   i = 1;
always @(posedge clk) begin
    datin <= data_men[i];
    i <= i + 8'd1;
end

initial begin
    clk <= 0;
    rst <= 0;
    datin <= 0;
    coef <= 0;
#4
coef <= {-25'd15,25'd19,25'd123,25'd123,25'd19,-25'd15};
#6000
$stop;
end

always #2 clk = ~clk;

winfilter wininst(
.coef(coef), 
.datin(datin), 
.clk(clk), 
.rst(rst), 
.datout(datout)
);
endmodule

  其中dsp48参数设置:

 

 仿真结果:

 

posted @ 2018-02-07 12:44  LeeLIn。  阅读(3551)  评论(0编辑  收藏  举报